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Abstract

Fanglei Lin

Towards Full Preservation of Polarization of Proton Beam in the AGS

As an injector to RHIC (Relativistic Heavy Ion Collider) at Brookhaven National

Laboratory for spin program, the AGS (Alternating Gradient Synchrotron) is the

bottleneck for preserving the polarization of proton beam from 2.4 GeV to 24 GeV.

Because the spin tune νs is energy dependent, i.e. νs = Gγ (G is the anomalous

gyromagnetic g-factor, γ is the Lorentz factor), two major spin resonances, an im-

perfection resonance happening at Gγ = k and an intrinsic resonance happening

at Gγ = k ± νy (k is integer and νy is the vertical betatron tune), can cause the

beam to become depolarized completely during the acceleration. To overcome these

resonances, local spin rotators called Siberian snakes are introduced to preserve the

polarization of the proton beam in the AGS.

Two partial snakes (rotating the spin vector by an angle of less than 1800), a

normal conducting helical dipole snake and a superconducting helical dipole snake,

have been used in AGS 2006 polarized proton run. Separated by 1/3 of the ring,

the two partial snakes provide a spin tune gap that is wide enough to accommodate

the vertical betatron tune νy so that both imperfection and intrinsic resonances are

avoided. This configuration resulted in 65% polarization measured at the AGS ex-

traction energy with a 82-86% polarization at the injection. However, there was still

20% polarization loss. Three possible reasons could explain the polarization loss: (1)

horizontal intrinsic resonances happening at νs = k ± νx due to a non-vertical stable

spin direction caused by the partial snakes, (2) residual vertical intrinsic resonances

due to the low vertical tune at the beginning of the acceleration, (3) high order partial

snake resonances.

Preliminary simulations using a simplified analytic model and spin tracking pro-
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gram SPINK showed the existence of horizontal intrinsic resonances. With realistic

AGS lattice parameters, acceleration rate, and partial snakes strengths, the results

from both the simplified analytic model and multi-particle spin tracking agreed well

when artificially removing the spin coherence (the spin components after one reso-

nance are affected by the resonances they passed). The beam polarizations reach more

than 10% loss from these simulations. Two kinds of experiments, horizontal polariza-

tion profile measurement and B-field scan, were carried out to explore the horizontal

intrinsic resonance. Both results confirm the polarization loss. The horizontal intrin-

sic resonance strengths from the data fitting also agrees with the calculations from

the simplified analytic model.

Because the vertical betatron tune was pushed to be inside the spin tune gap only

after ramping past Gγ = 5, leaving two weak intrinsic resonances in the acceleration

cycle, the vertical motion could still cause depolarization. Therefore, vertical polar-

ization profiles taken at the AGS extraction energy showed depolarization due to the

vertical motion, which was consistent with the spin tracking simulations.

With high vertical betatron tunes inside the spin tune gap, modest depolarization

can still be caused by high order partial snake resonances. Vertical betatron tune scans

at several intrinsic resonance locations were also taken to explore these resonances

experimentally. In addition, the vertical betatron tunes were close to integer 9 at the

flattop energies, the beam polarization was sensitive to the harmonic orbit correction.

The measured polarization vs the 9th harmonic component of the orbit served as a

merit of harmonic orbit correction. All of the simulation and experimental results

are presented in this thesis. The properties of spin motion in the presence of partial

snakes are also discussed.

————————— —————————

————————— —————————

—————————

viii



CONTENTS ix

Contents

1 Introduction 1

2 Spin Dynamics with Partial Siberian Snakes 5

2.1 General Spin Motion in a Synchrotron . . . . . . . . . . . . . . . . . 5

2.2 Properties of Spin Motion with Partial Snakes . . . . . . . . . . . . . 15

3 AGS Experimental Facility 19

3.1 AGS Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Two Partial Siberian Snakes in the AGS . . . . . . . . . . . . . . . . 24

3.3 Coulomb-Nuclear Interference Polarimeter . . . . . . . . . . . . . . . 29

4 Simulation and Experiment 33

4.1 Investigation of Horizontal Intrinsic Resonance . . . . . . . . . . . . . 34

4.1.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Investigation of Other Depolarizing Sources . . . . . . . . . . . . . . 56

4.2.1 Residual Vertical Intrinsic Resonances . . . . . . . . . . . . . 56

4.2.2 High Order Partial Snake Resonances . . . . . . . . . . . . . . 65

4.2.3 Closed Orbit Distortion . . . . . . . . . . . . . . . . . . . . . 72

5 Summary and Solution 77

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



x CONTENTS

5.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A Transverse and Longitudinal Component of Magnetic Field with Re-

spect to the Beam Direction

85

B Effective Froissart-Stora Formula for a Gaussian Distribution Beam 87

C Spinor Equation 89

D Horizontal Component of the Stable Spin Direction 91

E Spin Rotation for Spin Tracking 95



LIST OF TABLES xi

List of Tables

3.1 Locations of quadrupoles and multipoles in the AGS . . . . . . . . . 21

3.2 Parameters of three CNI polarimeter targets. . . . . . . . . . . . . . 30

4.1 Experimental data for horizontal polarization profile measurements

with two partial snakes at 10% plus 5.9% and 14% plus 5.9%. . . . . 47

4.2 Fitted parameters from beam profiles. A is the normalized count rate

at the beam center, x0 is the beam center position, and σ is the hori-

zontal rms beam size. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Fitted parameters from horizontal polarization profiles. Pi is the initial

polarization at injection and K = ε(γ)√
γ

is the energy independent factor. 49

4.4 Beam parameters used in the calculation of rms beam size σβ due to

the betatron motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Comparison of K values between the calculation and the fitting for two

different partial snakes configurations. . . . . . . . . . . . . . . . . . 51

4.6 Part of the B-field scan data. . . . . . . . . . . . . . . . . . . . . . . 54

4.7 Important parameters from four spin trackings with different vertical

tune paths. Different colors represent different trackings as shown in

Fig. 4.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.8 Calculated strengths of the two intrinsic resonances from DEPOL with

different vertical tune paths. . . . . . . . . . . . . . . . . . . . . . . 64



xii LIST OF TABLES

4.9 Strengths of four strong intrinsic resonances calculated by DEPOL in

the bare AGS machine assuming particle at a normalized rms emittance

2.5 mm-mrad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.10 High order partial snake resonance locations for both 10% (2.1 T) cold

snake plus 5.9% (1.53 T) warm snake and 14% (2.5 T) cold snake plus

5.9% (1.53 T) warm snake conditions. . . . . . . . . . . . . . . . . . 69

4.11 AGS imperfection resonance strengths calculated using DEPOL with

different closed orbit distortions and vertical tune close to 9 at Gγ =

36 + νy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



LIST OF FIGURES xiii

List of Figures

2.1 The curvilinear coordinate system for a particle motion in a circular
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Chapter 1

Introduction

Introduced by Uhlenbeck and Goudsmit to explain the result of Stern-Gerlach ex-

periments, spin has become a fundamental concept and plays an important role in

the interactions of elementary particles. To study spin interactions in the quark and

gluon level, one employs collision of intense beams of polarized protons at high energy.

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Lab provides a

unique facility for this study. Here, polarized protons can be brought into any en-

ergy for collisions from 50 to 500 GeV center of mass energy. The design calls for

an intensity of 2 × 1011 proton/bunch with a polarization of 70%. As the injector

to RHIC, the Alternating Gradient Synchrotron (AGS) is mostly the bottleneck to

preserve polarization.

When polarized protons are accelerated in an accelerator, the spins of the particles

will precess because of the spin interactions with the magnetic fields. In a perfect

circular accelerator with only vertical guiding dipole magnetic fields, the spin vector

precesses around the vertical direction called stable spin direction n̂co that is defined

as the invariant spin vector after a complete orbit revolution for a given location

in the accelerator. The number of spin precessions per orbital revolution is called

spin tune νs. Horizontal magnetic fields can perturb the spin vector away from the
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vertical, causing spin polarization loss when the spin precession frequency equals the

frequency of the spin perturbing magnetic fields. Two main types of spin resonances

are the imperfection resonances driven by the vertical closed orbit errors in dipoles

and quadrupoles, and vertical intrinsic resonances driven by the vertical betatron

motion in quadrupoles. For an accelerator with P superperiods of the lattice, the

imperfection resonances happen at Gγ = n and the intrinsic resonances happen at

Gγ = kP±νy, whereG = g−2
2

is the anomalous gyromagnetic g-factor, γ is the Lorentz

factor, Gγ is the unperturbed spin precession tune, n, k are integers, νy is the vertical

betatron tune. In addition, there are also other higher-order depolarization resonances

due to the linear horizontal and vertical betatron coupling, nonlinear magnetic fields

provided by the higher order magnetic multipoles, and by synchrotron oscillations.

However, the resulting depolarization due to the latter effects can be negligible if

these high order spin resonances are much weaker than the two types of main spin

resonances. In the AGS, the polarized proton beams are accelerated from 2.35 GeV

to 24 GeV, passing 41 imperfection resonances and 7 strong intrinsic resonances from

injection to extraction. These resonances can totally destroy the polarization of the

proton beam.

In order to overcome the spin depolarizing resonances, Derbenev and Kondratenko

proposed in 1978 to use a local magnet called Siberian snake to rotate the spin vector

around a horizontal axis by 1800 [1]. In the presence of the snake, the spin tune

becomes 1
2
, and the perturbations of spin motion from the dipole errors are canceled

in every two successive revolutions. Since the depolarizing resonance strength in

the medium energy synchrotron is not strong, a partial snake [2, 3, 4] that rotates

spin vector by less than 1800 can be strong enough to overcome both imperfection

and intrinsic resonances provided that the betatron tunes are placed within a range of

resonance free gap called spin tune gap. For instance, two partial helical dipole snakes

have been successfully commissioned in the AGS. The cold snake is a super conducting

helical dipole snake with a maximum field of 3 Tesla [5, 6]. The warm snake is a normal
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conducting helical dipole snake at 1.53 Tesla [7]. With the combination of the two

partial snakes, high intensity (1.5× 1011 proton/bunch) polarized proton beam (65%

polarization) was achieved at the AGS extraction energy in the 2006 with 82-86%

polarization at the injection.

With the two partial snakes in the AGS the stable spin direction is not vertical,

therefore the perturbing fields that rotate the spin away from the stable direction have

vertical as well as horizontal components. Particles undergoing horizontal betatron

oscillation encounter vertical field deviations at the horizontal oscillation frequency.

As a result, resonances with the spin tune are driven by the horizontal betatron

oscillations, and will occur whenever the spin tune satisfies νs = n± νx. This type of

resonance is called horizontal intrinsic resonance [8]. A proper understanding of the

behavior of this type resonance is needed so that the full polarization transmission

can be implemented for reaching the RHIC spin project goals.

This thesis studies ideas in achieving a full polarization for the AGS. Chapter

2 provides the general spin motion in a synchrotron and the spin dynamics with

partial Siberian snake(s) dealing with the normal polarization issues. In Chapter

3, AGS experimental facilities for the investigation of polarization are described.

Experimental results and analyses of the exploration of the polarization in AGS follow

in Chapter 4. In this part, not only the horizontal intrinsic resonance but also other

factors leading to beam depolarization are presented. Finally, the summary and

conclusion are given in Chapter 5.
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Chapter 2

Spin Dynamics with Partial

Siberian Snakes

2.1 General Spin Motion in a Synchrotron

I Basic Spin Motion

For a beam with a large number of particles in an accelerator, the polarization is

defined as the ensemble averaged spin vector in a classical picture. For a system of

spin-1
2

particles, the degree of polarization is given as,

P =
N+ −N−
N+ +N−

, (2.1)

where N± are the numbers of particles in two spin state | 1
2
,±1

2
〉 along a quantization

axis. When the spin states of all particles are along one quantized axis, the beam is

100% polarized with P = ±1. Three parameters are needed to specify the polarization

of spin-1
2

particles: two parameters for the quantized axis and one for N+/N− ratio.

Therefore, the polarization of the spin- 1
2

system is a vector characterized by a direction

and a magnitude. The polarization is the ensemble average of the spin vector given

by ~P = 2
h̄
〈 ~SR〉 = 〈~σ〉 using the Pauli spin matrices ~σ.
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In the rest frame of a moving particle in a synchrotron, the motion of spin vector

under the external electro-magnetic field is described by the Thomas-BMT equation

[9, 10]

d~S

dt
=

e

γm
~S ×

[

(1 +Gγ) ~B⊥ + (1 +G) ~B‖ +

(

Gγ +
γ

γ + 1

) ~E × ~β

c

]

(2.2)

where the spin vector ~S is in the particle rest frame and ~B⊥ and ~B‖ are the transverse

and longitudinal components of the magnetic fields in the laboratory frame with

respect to the particle’s velocity ~βc. γ is the Lorentz factor, G = g−2
2

is the anomalous

gyromagnetic factor which has the value 1.7928 for proton, and the vector ~E stands

for the electric field.

The Thomas-BMT equation shows that the spin vector precesses around the trans-

verse magnetic field at a rate 1
γ
(1 +Gγ), and around the longitudinal magnetic field

at a rate 1
γ
(1 + G). Typically, the terms involving ~E is usually small comparing to

those involving the magnetic fields ~B‖ and ~B⊥. For most of our discussion of spin

motion the electric field has been neglected for the simplification of the Thomas-BMT

equation.

Since the particles of a beam bunch in an accelerator circulate around a reference

orbit, the Thomas-BMT equation can be expressed around this reference orbit in the

Frenet-Serret coordinate system following Courant and Ruth [11, 12] as shown in Fig.

2.1, where the three unit basis vectors along the radially outward x̂, longitudinally

forward ŝ, and vertically transverse ŷ. In a planar circular accelerator, we have

dx̂

ds
=
ŝ

ρ
,

dŝ

ds
=

−x̂
ρ
,

dŷ

ds
= 0, (2.3)

where ρ is the local radius of curvature of the reference orbit. A particle’s motion in

this coordinate system is given by

~r = ~r0(s) + xx̂ + yŷ, (2.4)

~v =
d~r

dt
=
ds

dt

[

x
′

x̂+ (1 +
x

ρ
)ŝ+ y

′

ŷ

]

, (2.5)
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Reference Orbit

x̂ŝ

ŷ
r
r

0̂r

v
r

Particle Position

Figure 2.1: The curvilinear coordinate system for a particle mo-

tion in a circular accelerator. x̂, ŝ and ŷ are the unit

basis vectors along the radially outward, the longitu-

dinally forward and the vertically transverse directions

and form a right-handed system.

with ~r0 being the reference orbit and ŝ = d~r0

ds
.

The transverse and longitudinal component of the magnetic field can also be

expressed under the Frenet-Serret coordinate system (See Appendix A),

~B⊥ = Bρ

(

1 − x

ρ

) [(

x
′′ − 1

ρ

)

ŷ +
y

′

ρ
ŝ− y

′′

x̂

]

, (2.6)

~B‖ = (Bs + y
′

By)ŝ = −Bρ
(

y

ρ

)′

ŝ. (2.7)

Here Bρ standing γmv/e is the magnetic rigidity of the particle.

Then translating the time independent variable to the bending angle in a dipole

by using d
dt

= v
ρ+x

d
dθ

, Eq. (2.2) becomes

d~S

dθ
= ~S × ~F . (2.8)
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The vector F is

~F = F1x̂+ F2ŝ+ F3ŷ

= [−ρy′′

(1 +Gγ)]x̂

+ [(1 +Gγ)y
′ − ρ(1 +G)(

y

ρ
)
′

]ŝ

+ [−(1 +Gγ) + (1 +Gγ)ρx
′′

]ŷ. (2.9)

Introducing three θ-independent unit vectors (ê1, ê2, ê3) coinciding with (x̂, ŝ, ŷ)

at any azimuth in the ring, Eq. (2.8) can be expressed as

d~S

dθ
= ~n× ~S, (2.10)

where

~n = −[F1ê1 + F2ê2 −Gγê3]. (2.11)

In an ideal planar accelerator with only the vertical bending magnetic fields (F1 =

F2 = 0), the spin vector will precess around the vertical direction by Gγ per orbital

revolution. The spin vector will stay in the vertical direction if it is set initially

vertical. Any spin vectors of the particles not lying on the vertical direction will

precess around the vertical direction with Gγ spin precession turns per revolution

during the acceleration. Thus the vertical direction is called the stable spin direction

or spin closed orbit, which means the spin vector comes back to the same direction

at a certain azimuthal position after one revolution, and νs = Gγ is the spin tune in

such ideal planar accelerator.

II Spin Resonances

In most synchrotrons, the vertical direction has been considered as the polarization

direction because of the vertical guiding dipole fields. The sources of depolarization

for a vertically polarized beam come from the horizontal components of the magnetic

fields ~B‖ and ~B⊥. Since the accelerators are mainly composed of bending magnets
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and quadrupoles, the horizontal magnetic field components due to dipole rolls and

quadrupoles can precess the spin away from the vertical direction. Additionally,

perturbing fields can also come from multipoles and the synchrotron motion. Based

on the sources of depolarization, the spin resonances can be classified to imperfection

resonance, intrinsic resonance and high-order resonance.

The imperfection resonances are driven by the vertical closed orbit displacement

from the center of a quadrupole due to the dipole rolls or quadrupole misalignments.

Since the field errors perturb the spin vector in every revolution, the imperfection

resonances happen at each Gγ = integer, where Gγ is the spin tune and the reso-

nance strength is proportional to the vertical closed orbit distortion. The intrinsic

resonances are driven by the vertical betatron motion in quadrupoles, where the hor-

izontal focusing magnetic fields are present. For an accelerator with P superperiods

of the lattice, the intrinsic resonances happen at Gγ = kP ± νy, where k is integer

and νy is the vertical betatron tune. The high-order resonances are driven by other

different mechanisms. For instance, the synchrotron sideband resonances come from

the synchrotron motion modulation (energy oscillations) around the primary spin

resonances. Coupling spin resonances arise from the linear coupling of the horizontal

and vertical betatron motion.

Using the Thomas-BMT equation, the spin resonance strength can be given by

[10]

εK =
1

2π

∮

[(1 +Gγ)
∆Bx

Bρ
+ (1 +G)

∆B‖
Bρ

]eiKθds. (2.12)

Here ∆Bx is the radial perturbing field, ∆B‖ is the longitudinal perturbing field. The

spin resonance strength can also be expressed in terms of particle coordinates

εK =
−1

2π

∮

[(1 +Gγ)(ρz
′′

+ iz
′

) − iρ(1 +G)(
z

ρ
)
′

]eiKθdθ, (2.13)

where ρ is the local orbit curvature, z is the vertical displacement of the beam from

the center of a quadrupole, and K is the resonance spin tune.
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III Froissart-Stora Formula

Under a constant resonance crossing rate α = d(Gγ)
dθ

, the final polarization of a beam

after passing through an isolated spin resonance ε is given by the Froissart-Stora

formula [13],

〈Pf

Pi
〉 = 2e−π

|ε|2

2α − 1. (2.14)

The effect of the resonance on the polarization is determined by the ratio of π |ε|2
α

.

For a weak resonance, the polarization can be preserved if the resonance is crossed

with a high speed that produces π |ε|2
α

� 1. On the other hand, a strong resonance

can be overcome by a full spin flip with the condition π |ε|2
α

� 1. For example, 99%

polarization can be maintained if ε ≤ 0.056
√
α, and 99% spin flip can be obtained if

ε ≥ 1.8
√
α.

A beam bunch is composed of particles with different betatron amplitudes and

phases, the beam polarization is the ensemble average of spin vectors of particles in

the bunch. Therefore, given a beam distribution ρ(I) as a function of the emittance,

the polarization after passing through a resonance is given by

〈Pf

Pi
〉 =

∫ ∞

0

[2e−
π|ε|2

2α − 1]ρ(I)dI, (2.15)

with
∫

ρ(I)dI = 1. (2.16)

Here Pi and Pf are the polarization before and after crossing the resonance. Normally,

the intrinsic resonance strength is proportional to the square root of the particle

emittance I,

|ε(I)|2 = |ε(I0)|2
I

I0
, (2.17)

where I0 is the rms emittance of the beam, ε(I0) is the rms value of resonance strength.

For a beam with Gaussian distribution ρ(I) = 1
2I0
e
− I

2I0 in the phase space, we have
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(See Appendix B)

〈Pf

Pi
〉 =

1 − π|ε(I0)|2
α

1 + π|ε(I0)|2
α

(2.18)

IV Siberian Snake

In order to maintain polarization in a synchrotron, an effective approach, proposed

by Derbenev and Kondratenko, is to use Siberian snakes [1]. Siberian snakes are local

spin rotators that cause the spin vector to precess by an angle of less than or equal

to 1800 around an axis in the horizontal plane.

A full Siberian snake, rotating the spin vector by an angle of 1800, forces the spin

tune to be 1
2
, independent of energy. Any perturbation on the spin from the magnetic

field errors in the accelerator lattice can be canceled in successive turns. Therefore, a

full snake is strong enough to overcome all type of spin resonances. A partial Siberian

snake rotates the spin vector by an angle of less than 1800. The resulting spin tune

is energy dependent. A partial snake can overcome weak imperfection resonance by

shifting the spin tune away from the integers. It can also overcome the intrinsic

resonances if betatron tunes are located in the spin tune gap. The details of spin

dynamics with partial Siberian snake(s) will be discussed in the next section.

The full and partial Siberian snakes have their own virtues and shortcomings. A

full snake can overcome all type spin resonances but need a long straight space to

accommodate its magnet(s). For instance, each of four full Siberian snakes in RHIC

is 10.4 meters long. A partial snake does not need a long straight section in the

machine lattice. However, it can overcome the imperfection resonances by shifting

the spin tune away from the integers. For a medium energy accelerator, a strong

enough partial snake can overcome both imperfection and intrinsic resonances with a

proper accommodation of vertical betatron tunes. For example, two 3 meters partial

snakes are used in the AGS due to the limitation of the available straight section.

Therefore, considering the cost and space constraints, the full snake is necessary for
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the high-energy accelerator and partial snake is a practical solution for the medium

energy accelerator.

V Spinor Equation

Generally, a spin 1
2

particle occupies one of the two eigenstates or a mixture of them

with a certain probability distribution. The spin state of the spin 1
2

particle is ex-

pressed by a two-component spinor wave function Ψ =





u

d



 . Here u and d are the

probabilities of the particle in the two pure spin states. Therefore, the spin vector ~S

with three components (S1, S2, S3) can be expressed by the two-component spinor as

Si = 〈Ψ|σi|Ψ〉 = Ψ†σiΨ, (2.19)

where σi, i = 1, 2, 3 are the Pauli matrices,

σ1 =





0 1

1 0



 , σ2 =





0 i

−i 0



 , σ3 =





1 0

0 −1



 . (2.20)

From the Thomas-BMT equation

d~S

dθ
= ~S × ~F , (2.21)

the spin equation can be represented for the spinor (See Appendix C)

dΨ

dθ
=

−i
2

(~σ · ~n)Ψ =
−i
2
HΨ =

−i
2





Gγ −ξ
−ξ∗ −Gγ



 Ψ, (2.22)

where H is the spin precessing kernel and ~σ is the Pauli spin matrices. Equation

(2.22) is equivalent to Eq. (2.2) and Eq. (2.10) in describing the spin motion in a

synchrotron. The three components of spin vector are obtained using the spinor Ψ

by

S1 = u∗d+ ud∗, S2 = −i(u∗d− ud∗), S3 = |u|2 − |d|2. (2.23)
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The off-diagonal matrix element of ξ(θ) = F1 − iF2 produces spin mixing between

the up-down components of the spinor Ψ. For an accelerator with no snake, ξ(θ) =

F1 − iF2 causes the spin depolarization due to the vertical motion. Because of the

periodic or quasi-periodic betatron motion of particles, the depolarization driving

term ξ(θ) can be expanded in Fourier series

ξ(θ) =
∑

K

εke
−iKθ. (2.24)

The Fourier amplitude εK is called the resonance strength, the corresponding fre-

quency K is called the spin resonance tune.

With an artificially introduced snake to overcome the spin resonances by precessing

the spin vector less than or equal to 1800 locally, ξ(θ) = F1 − iF2 becomes more

complicated because of the revised three components of vector F . Simplifying the

analytic model, the snake will be treated as a local spin rotator: kicking the spin vector

around the snake axis by a certain angle but no effect on the transverse motions in the

rest of the machine lattice. This results in the spinor equation Eq. (2.22) not being

altered in the whole synchrotron except at the snake location, where the artificial

spin rotation is introduced.

The spin motion equation throughout the snake location θs still has the same form

d~S

dθ
= ~S × ~F , (2.25)

but the integral should be from θ−s to θ+
s locally. Depending on the snake axis, the

three components of ~F will be given differently. Assuming the snake strength ζ, two

basic snake axis conditions are considered here.

1. For the snake axis in a horizontal plane with n̂s = cosφsê1 + sin φsê2, it has

F1 = −ρz′′

(1 +Gγ) + ζδ(θ − θs) cosφs

F2 = (1 +Gγ)z
′ − ρ(1 +G)(

z

ρ
)
′

+ ζδ(θ − θs) sinφs

F3 = −(1 +Gγ) + (1 +Gγ)ρx
′′

.
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Then the spinor equation still has

dΨ

dθ
=

−i
2





Gγ −ξ
−ξ∗ −Gγ



 Ψ, (2.26)

except that the off-diagonal matrix element ξ becomes

ξ(θ) = ζδ(θ − θs) +
∑

K

εke
−iKθ. (2.27)

The snake is located at the θs azimuthal angle in the ring with value of ζ

resonance strength. The Fourier amplitude εK is the resonance strength arising

from the spin perturbing fields in the whole ring, K is the resonance tune.

2. For the snake axis in vertical plane with n̂s = cos φsê1 + sinφsê3, it has

F1 = −ρz′′

(1 +Gγ) + ζδ(θ − θs) cosφs

F2 = (1 +Gγ)z
′ − ρ(1 +G)(

z

ρ
)
′

F3 = −(1 +Gγ) + (1 +Gγ)ρx
′′

+ ζδ(θ − θs) sinφs.

Then the spinor equation becomes

dΨ

dθ
=

−i
2





Gγ − ζδ(θ − θs)sinφs −ξ
−ξ∗ −(Gγ − ζδ(θ − θs)sinφs)



 Ψ, (2.28)

where the off-diagonal matrix element ξ has

ξ(θ) = ζδ(θ − θs)cosφs +
∑

K

εke
−iKθ. (2.29)

φs is the angle of snake axis with respect to the vertical direction.

By introducing an additional δ function, the spinor equations describe the spin

motion with a snake at the location θs. The spinor wave function Ψ can be obtained

by solving the spinor equation. And the propagation of the spinor wave function can

be tracked using the spin transfer matrix (STM) t(θf , θi) as

ψ(θf ) = t(θf , θi)ψ(θi). (2.30)



2.2 Properties of Spin Motion with Partial Snakes 15

Because the polarization vector is real, the matrix elements of the STM satisfy

t22 = t∗11, t21 = −t∗12, (2.31)

and

t†t = I, (2.32)

where I is the unit matrix.

For an accelerator, the magnetic fields are mostly piecewise constant, the final

spinor wave function is given by the product of STM,

ψ(θf ) =
N
∏

j=1

t(θj+1, θj)ψ(θi). (2.33)

A one turn map (OTM) for the stable spin direction is obtained by multiplying

the spin transfer matrices in one revolution around the accelerator, which can be

expressed as

t(θi + 2π, θi) = e−iπνsn̂co·~σ. (2.34)

Here νs is the spin tune, defined as the number of spin precession around the stable

spin direction per revolution, n̂co is the stable spin direction on the closed orbit, which

is the direction along the spin vector under OTM.

2.2 Properties of Spin Motion with Partial Snakes

In a perfect accelerator, the spin tune νs equals Gγ and the stable spin direction n̂co is

vertical. The introduction of snake(s) revises the spin tune and stable spin direction,

resulting in the resonance condition never being met. Therefore, a snake is a good

approach to overcome spin resonances.

For the convenience of discussion, the configuration of two partial snakes in the

AGS machine is considered in the following description. The two partial snakes,

separated by 1/3 of the ring, are used to overcome the spin resonances in the AGS,
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one is called the cold partial snake and the other the warm partial snake. Both of

the snake rotation axes are along the longitudinal direction. Given χc and χw, the

spin rotation angles caused by cold and warm snakes respectively, the closed orbit of

OTM of the spin transfer matrix becomes

T = e−i 1
2
Gγ(2π− 2π

3
−θ)σ3e−i χw

2
σ2e−i 1

2
Gγ 2π

3
σ3e−i χc

2
σ2e−i 1

2
Gγθσ3 , (2.35)

where θ is the orbital angle between the measurement location and the cold partial

snake. Identifying the OTM to Eq. (2.34), the spin tune νs and spin closed orbit n̂o =

cosα1ê1 + cosα2ê2 + cosα3ê3, where (cosα1, cosα2, cosα3) are the spin closed orbit

directional cosines along the radially outward,longitudinally forward and vertically

transverse axes respectively, are given by (See Appendix D)

νs =
1

π
arccos (cos

χc

2
cos

χw

2
cos [Gγπ] −

sin
χc

2
sin

χw

2
cos [Gγ

π

3
]), (2.36)

cosα1 =
−1

sin πνs

(cos
χw

2
sin

χc

2
sin [Gγ(π − θ)] +

sin
χw

2
cos

χc

2
sin [Gγ(

π

3
− θ)]), (2.37)

cosα2 =
1

sin πνs
(cos

χw

2
sin

χc

2
cos [Gγ(π − θ)] +

sin
χw

2
cos

χc

2
cos [Gγ(

π

3
− θ)]), (2.38)

cosα3 =
1

sin πνs
(cos

χw

2
cos

χc

2
sin [Gγπ] −

sin
χw

2
sin

χc

2
sin [

Gγ

3
π]). (2.39)

Equations (2.36) to (2.39) show that the spin tune νs and stable spin direction

n̂co at azimuthal location θ depend on energy Gγ as well as two snake rotation angles

χc and χw. Figure 2.2 shows the spin tune and vertical component of the stable spin

direction as functions of Gγ. Two conditions of snakes are presented, one for a 14%

cold snake and a 5.9% warm snake, one for a 10% cold snake and a 5.9% warm snake.

The quoted percentage of snake strength is given as the fraction of the snake rotation
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Figure 2.2: Spin tune from Eq. (2.36) (top plot) and vertical com-

ponent of the stable spin direction Eq. (2.39) (bot-

tom plot) as a function of Gγ with two partial snakes

separated by 1/3 of the ring in the AGS. The solid

curves are for 10% cold snake and 5.9% warm snake;

the dashed ones are for 14% cold snake and 5.9% warm

snake.
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angle to that of a full snake, i.e. χ/π. The deviation of spin tune from an integer

reaches its maximum every Gγ = 3n, where n is an integer, and the tilt of the stable

spin direction away from vertical direction reaches its minimum at Gγ = 3n + 1.5.

Since the AGS has a super-periodicity of 12 and the vertical betatron tune is close to

integer 9, this feature provides the maximum space for placing the vertical betatron

tune in the prohibited region of spin tune (as known as spin tune gap) at all the

strong vertical intrinsic resonances. The spin tune gap at all the other integers is

large enough to avoid all weak vertical intrinsic resonances.

With the two partial snakes the stable spin direction is not vertical. Therefore the

perturbing fields that rotate the spin away from the stable direction have vertical as

well as horizontal components. Particles undergoing horizontal betatron oscillations

encounter vertical field deviations at the horizontal oscillation frequency. As a result,

resonances with the spin tunes driven by the horizontal betatron oscillations will

occur whenever the spin tunes satisfied νs = k ± νx. This type of resonance is called

a horizontal intrinsic resonance [8]. To study the effect of horizontal resonances on

the polarization, simulation works, both from a simplified analytic model and from

multi particles spin tracking, were performed. Measurements were also carried out in

the AGS to explore the horizontal intrinsic resonances.
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Chapter 3

AGS Experimental Facility

3.1 AGS Configuration

The Alternating Gradient Synchrotron (AGS) is the polarized proton injector to the

Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The

polarized H− beam is originally produced by the optically pumped polarized ion

source (OPPIS) [14] with 500 µA in a single 400 µs pulse, which corresponds to

12.5 × 1011 polarized H− ions. Then the polarized H− ions are accelerated to 200

MeV in the LINAC. The pulse of H− ions is injected through a thin stripping foil and

captured into a single bunch of about 4× 1011 polarized protons in the AGS Booster.

The single bunch of polarized protons is accelerated in the Booster to 1.5 GeV kinetic

energy and then transferred to the AGS, where it is accelerated to 23.8 GeV total

energy for final injection into RHIC. Figure 3.1 shows the whole acceleration complex

for the polarized proton.

The AGS lattice is made up of 12 super-periods named from A to L starting from

the injecting point. Each super-period has twenty combined function dipole magnets

of long and short lengths, numbered 1 to 20 in each superperiods. The space between

two adjacent magnets is a straight section, named for instance the A3 straight section
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Figure 3.1: Acceleration complex for polarized proton at

Brookhaven National Laboratory.
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Table 3.1: Locations of quadrupoles and multipoles in the AGS

Equipments Straight Section

12 vertical tune quadrupoles A3, B3, C3 ... L3

12 horizontal tune quadrupoles A17, B17, C17 ... L17

12 vertical sextupoles A7, B7, C7 ... L7

12 horizontal sextupoles A13, B13, C13 ... L13th

12 polarized proton quadrupoles A3, B3, C3 ... L3

next to vertical tune quadrupoles

6 gamma transition quadrupoles A17, C17, E17, G17, I17, K17

next to the horizontal tune quadrupoles

6 skew quadrupoles B17, D17, F17, H17, J17, L17

next to the horizontal tune quadrupoles

after the 3rd magnet in the A super-period. A few quadrupoles and other multipoles

for machine tuning are installed in these straight sections as shown in Table 3.1.

The circumference of the “design” orbit in AGS is 807.09 m (average radius of to

128.4526 m), which is essentially at the center of the quadrupoles. At the extraction

energy, the circumference of the closed orbits is increased to 807.12 m (radius equals to

128.45798 m), 3 cm larger than the “design” value, to match the injection frequency

of RHIC. The AGS machine operates at the harmonic number of 12 and nominal

betatron tune 8.75 in both horizontal and vertical planes. To accelerate the polarizied

proton from 2.35 GeV/c to 23.8 GeV/c in the AGS 2006 run, the particle revolution

frequency sweeps from 340.73 kHz to 371.18 kHz. After injection, the pulsed rectifier

bank of the main magent power supply is turned on to rapidly increase the magnet’s

field to the desired current. Then the current is reduced by the flat-top rectifier bank

to the precise final field. The whole process results an varied acceleration rate of α

in the AGS as shown in Fig. 3.2 of the ramping rate as a function of time in one

acceleration cycle.
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Figure 3.2: AGS ramp rate of α = dGγ
dθ

as a function of time in an

acceleration cycle.

In order to overcome the spin depolarizing resonances and measure the beam

polarization, a few important instruments have been installed. Figure 3.3 shows the

schematic drawing of the AGS polarized proton complex.

In 1995, a 5% solenoid partial Siberian snake was installed in the I10 straight

section to overcome the imperfection resonances, and tune-jump method [15] was

used to overcome the intrinsic resonances. The 5% partial snake was operated by a

4.7 Tm solenoid with effective length 2.286 m, 3.8 million ampere turns and 1.5 MW

power supply. An internal polarimeter [4] was installed in the C20 straight section to

measure the circulating beam polarization during that time. Although this solenoid

partial snake was good enough to overcome the imperfection resonances, the linear

betatron coupling due to the solenoid magnet of the partial snake still led to modest

polarization loss.

In 1998, in addition to the 5% solenoid partial snake, an AC dipole magnet in the
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Figure 3.3: Schematic drawing of the AGS polarized proton com-

plex.

A10 straight section was introduced to correct four strong intrinsic resonances in the

AGS [16, 17]. The mechnism of using an AC dipole was to force all particles in the

beam to coherently oscillate at a large amplitude and induce full spin flip. The AC

dipole magnet is 81.28 cm long, 30.48 cm wide and 22.225 cm high with the resonance

frequency tuned at 70 kHz for 10ms pulses for each spin resonance. The polarization

of 40% was reached with this combination.

To reduce the transverse coupling resonances caused by the strong solenoidal field,

a 5.9% normal conducting helical dipole partial snake (called warm partial snake) [7]

was installed in the E20 straight section in 2004 to replace the 5% solenoid partial

snake. With the combined operation of the warm snake and the AC dipole, 55%

polarization was achieved at the AGS extraction energy.

However, the goal of full polarization transmission requires the correction of all

the intrinsic resonances including the weak ones. In addition to the 5.9% warm partial
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snake, a super-conducting helical dipole snake (called cold partial snake) [5, 6] with a

maximum strength of 22% at the AGS extraction energy was added in the A20 straight

section before the polarized proton run in 2005 to overcome all the imperfection and

the intrinsic resonances. To eliminate the significant lattice distortion caused by the

the two partial snakes, especially at low energy, four compensation quads were added

for each of the two helical snake magnets. With this setup, the horizontal betatron

tune was νx = 8.70 and the vertical betatron tune νy was maintained just above

8.90 at injection and ramped up between 8.96 and 9 after Gγ = 5. The vertical

chromaticity was set close to zero to reduce betatron tune spread due to momentum

spread. The combination of the 5.9% warm partial snake and 10% cold partial snake

improved the polarization up to 65% with 1.5 × 1011 protons/bunch in AGS 2006

polarized proton run.

3.2 Two Partial Siberian Snakes in the AGS

The Siberian snakes are the only effective approach to maintain the polarization if

the energy of the proton beam exceeds 30 GeV. Snakes can be constructed by using

a constant longitudinal or transverse magnet individually. However, these schemes

have been gradually discarded because of the betatron motion coupling caused by the

longitudinal magnetic field or the large orbit excursion caused by the transverse mag-

netic field. In 1996, a design of the Siberian snake constructed from helical magnets

was proposed by Ptitisyn and Shatunov for RHIC [18]. This idea was first realized in

RHIC with four full superconducting Siberian snakes (two in each accelerating ring:

Blue and Yellow ring), each of which was made of four 2.4 meter helical dipoles and

built in 2002. With the commissioning of the four snakes (two in each ring), RHIC

has maintained high polarization on the energy ramping and at top energy of 100

GeV.

However, the whole 10 meter long full snakes are not practical to be installed in
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the AGS because the longest straight section is only 3 m. The new snake must be very

compact with an arrangement of helical dipoles. After many studies of possibility,

compact helical snakes, proposed by Thomas Roser [19], were adopted. The partial

snake is composed of a single magnet with a sequence of three helices with different

pitches. The design includes the compensation of the orbit excursion in the helix by

putting steering magnets at the ends of the helix. This structure appeares the most

efficient in terms of spin rotation, orbit control and construction.

Two helical dipole partial snakes in the AGS, called warm partial snake [7] and

cold partial snake [6], were developed and implemented at RIKEN Japan and at BNL

USA, respectively. Except for the larger spin rotation produced by the cold snake,

the differences between the two partial snakes are

1. the iron in the cold snake is saturated, resulting in the almost linear field scale

with the current in the coils; while the field in the warm snake is not linear with

the excitation.

2. the cold snake must be operated in DC; while the current in the warm snake

may be varied in principle.

The warm partial snake is a normal conducting helical dipole partial snake, located

at the E20 straight section in the AGS. The helical dipole field strength is designed

at 1.5 Tesla with 2100 mm the whole length of iron yoke. The coil consists of three

sections: the slow pitch of 0.196 deg/mm for 1320 mm in the center and the fast pitch

of 0.4 deg/mm for 390 mm in each end. The cross-section of the coil is perpendicular

to current flowing direction and always a rectangular shape. The pitches and lengths

of each section are optimized to minimize the beam shift and deflection angle by using

3D field analysis and OPERA3D/TOSCA. The maximum orbital offset inside of the

warm snake is approximately 18.77 mm in the horizontal plane, and 19.45 mm in the

vertical plane at the injection energy of 2.4 GeV.
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The cold partial snake is a super-conducting helical dipole partial snake, located

at the A20 straight section in the AGS. The maximum field in the super conducting

magnet is 3 T with 2100 mm the whole length of the iron yoke. The coil also consists

of three sections with a pitch of 0.2017 deg/mm for 1208 mm in the center and a

pitch of 0.4036 deg/mm for 446 mm in each end. In addition, a solenoid winding

is built inside the main coils to compensate for the longitudinal component of the

helical dipole field. Meanwhile, several corrector coils are placed on the same tube

with the solenoid for the orbit correction.

In order to match the two snakes to the AGS lattice perfectly, four quadrupoles

called compensation quadrupoles [20, 21], two on each side for each snake, have been

added in to match the β functions at entrance and exit of the straight section contain-

ing snakes. The four compensation quadrupoles QCE17, QCE19, QCF1 and QCF3

are located in E17, E19, F1 and F3 respectively in the AGS for warm snake. An-

other four compensation quadrupoles QCA17, QCA19, QCB1 and QCB3 are located

in A17, A19, B1 and B3 respectively for the cold snake. QCE17, QCF3, QCA17

and QCB3 are obtained by extra windings on the four existing tune quads QHFH

and QHFV; QCE19, QCF1, QCA19 and QCB1 are newly fabricated quads of 0.35

m length. Since both snakes have focusing and coupling which are strongest at the

lowest energy and become more and more transparent as beam energy ramps up,

the operation of the four compensation quadrupoles is particularly important at low

energies. The gradients of these compensation quadrupoles scale almost exactly as

the reciprocal of the beam rigidity Bρ = p/e squared because the transverse magnetic

field on the orbit in the helical snake scales with the square of the orbit displacement

that grows linearly with the inverse of the beam energy.

The two snakes run at constant fields, resulting in the snake strengths dropping as

the beam energy ramps up due to energy dependent of spin rotation at low energies

shown in Eq. (2.2). Both snakes have the maximum rotation at the lowest energy.

Generally, the partial snake percentage quoted is the strength at the top energy.
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Therefore, the warm snake is 5.9% partial snake that makes the spin rotation by

10.62 degrees at the flattop; the cold snake is 10% or 14% partial snake, rotating the

spin direction by 18 degrees and 25.2 degrees, respectively at the flat top, based on

the strength operated in the AGS 2006 run.

The snake field map is generated by Opera-3D [22]. The program SNIG [23] is used

to track the particle trajectories through the field map. SNIG also calculates the spin

evolution by integration of the BMT equation to give the 3× 3 spin transfer matrices

for different proton energies on the trajectories of particles. The spin rotation angles

and axes can be obtained from the spin matrix. Figure 3.4 and 3.5 give the curves of

the spin rotation angle as function of γ in AGS 2006 run during the acceleration cycle

for the warm and cold snakes, respectively. The warm snake was always operated
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Figure 3.4: AGS warm snake spin rotation angle as function of γ.

at a constant magnetic field 1.53 T. The cold snake was run at 2.1 T (10%) constant

magnetic field and 2.5 T (14%) constant magnetic field.
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Figure 3.5: AGS cold snake spin rotation angle as function of γ.

The correlations between the spin rotation angle and the energy can be obtained

by fitting the partial snake strength curves. Based on an analytical model of the field

of a helix dipole in the Blewett-Chasman expression [24], the transverse magnetic

field scales with the square of the orbit displacement. Because the orbit amplitude

in a helical snake grows linearly with the energy, given a known B0 = 2.5 the scaling

law for the warm partial snake is [25],

µ = (
B

B0
)2(C1 +

C2

C3 + γ2
). (3.1)

The fitting result gives

B = 1.5307,

C1 = 28.2015,

C2 = 52.1787,

C3 = −1.8921;
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The scaling law for cold snake is,

µ = (
B

B0
)2(C1 +

C2

γ2
). (3.2)

Here for the 10% cold snake, the fitting result gives

B = 3.4745,

C1 = 8.4147,

C2 = 29.5833,

and for the 14% cold snake:

B = 2.9835,

C1 = 17.7646,

C2 = 60.6398.

With the operation of the two partial helical dipole snakes, a spin tune gap is gener-

ated as shown of the spin tunes as function of Gγ in Fig. 2.2. When the fractional

parts of the betatron tunes are put into the spin tune gap during the energy ramping,

both imperfection and intrinsic resonances can be avoided.

3.3 Coulomb-Nuclear Interference Polarimeter

A Coulomb-Nuclear Interference (CNI) polarimeter was installed in the C15 straight

section in the AGS in 2003 with the goal of improving the diagnostics and ultimately

increasing the polarization output to RHIC [26]. The CNI polarimeter is designed

to measure the spin-dependent asymmetry δ of the proton-Carbon elastic scattering

at very low momentum transfer in the Coulomb-Nuclear Interference region. The

absolute beam polarization is given by P = δ/AN , where AN is the analyzing power

for pC elastic scattering [27], δ is the left-right or up-down asymmetry.
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Table 3.2: Parameters of three CNI polarimeter targets.

Target Moving direction Thickness (mg/cm2) Width (µm)

Target1 Horizontally 4 250

Target2 Vertically 4 618

Target3 Horizontally 4 600

The AGS CNI polarimeter uses thin carbon foil targets and silicon strip detectors

(SSDs) that detect the energy and time of the recoil carbon nuclei. These carbon foil

targets are 3-5 mg/cm2 thick, 5 cm long and 250-600 µm wide. During the AGS 2006

polarized proton run, three different carbon targets were used. Table 3.2 gives the

parameters of the three targets.

All these targets are mounted on a moveable frame inside the polarimeter chamber.

For each measurement, only one of the targets is moved into the beam line. The silicon

detectors are segmented into 12 individual strips. Each strip is 2 mm wide and 10 mm

long, and is oriented perpendicular to the beam direction. The 90 degree detectors

are positioned directly to the left and to the right of the target at a distance of 32 cm.

There are four SSDs used for the 2006 run, two in the left arm and two in the right

arm. The two detectors in each arm are set to have the same acceptance of carbon

recoil angle, but slightly offset in azimuthal angle.

The current pulses from the SSDs are processed by the polarimeter data acqui-

sition (DAQ) system . After passing through a series of amplifiers, event pulses are

analyzed by a waveform digitizer (WFD) system. The WFD modules extract timing,

amplitude, and integrated charge from each event pulse. There are two criteria to be

used to separate carbon events from background and to ensure overall data quality.

One is based on the carbon time of flight (tof) to kinetic energy (Ekin) correlation

(tof-energy correlation),

tof = l

√

mC

2Ekin
. (3.3)
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Here l=32 cm is the distance from the target to the detector and mC is the carbon

mass 11.18 GeV/c2. The event cut is set to select events between ±20 ns of the

expected tof-energy correlation. Another criterion to select events is based on the

kinematic range in momentum transfer. For pC elastic scattering, the momentum

transfer, −t, is proportional to the kinetic energy of the scattered carbon,

−t = 2mCEkin. (3.4)

During the AGS 2006 run, the momentum transfer cut was 0.004472 (GeV/c)2≤-t≤
0.010062 (GeV/c)2, which corresponds to approximately 400 keV ≤ Ekin ≤ 900 keV.

The events that pass the selection cuts are used to calculate the left-right asymmetry

δ

δ =

√
L↑R↓ −

√
L↓R↑

√
L↑R↓ +

√
L↓R↑

, (3.5)

where L↑(L↓) is the number of events of the up (down) polarization in the left arm,

R↑ (R↓) is the corresponding events in the right arm. The advantage of using the

square root relation to calculate the asymmetry is that the systematic errors due to

the differences in the left and right detector acceptances, the difference in up and

down polarization states and the fluctuation of beam intensity from pulse to pulse

can be canceled to first order [28].

The analyzing power used for the AGS CNI polarimeter is based on the measure-

ment from the AGS E950 experiment [29] at a beam energy of 21.7 GeV. Since the

CNI polarimeter measurements happen at the AGS extraction energy of 24.3 GeV,

the data from AGS E950 measurement are fit with theoretical constraints. The effec-

tive analyzing power at 24.3 GeV is determined by weighting the theoretical values

with the measured event yields,

〈AN〉 =

∑nbin

i=1 (Ath
N )iNi

∑nbin

i=1 Ni

. (3.6)

Here (Ath
N )i is the theoretical value of the analyzing power for the ith -t bin. Ni is

the measured yield for the ith bin, and nbin is the number of -t bins used for the
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measurement. For the 2006 AGS run, the effective analyzing power 〈AN〉 = 0.01161.

The beam polarization P in AGS measured by the CNI polarimeter was then

calculated

P = δ/〈AN〉 (3.7)
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Chapter 4

Simulation and Experiment

As described in Chapter 2, with the two helical dipole partial snakes in the AGS the

stable spin direction is titled away from the vertical direction. The spin vector of

the polarized proton will precess around the non-vertical stable spin direction during

the whole acceleration. The interaction between the horizontal displacement and the

vertical magnetic field can also perturb the spin vector away from the stable spin

direction and cause polarization loss. When the spin precession frequency equals the

frequency of the perturbing magnetic field, a horizontal intrinsic resonance occurs.

The condition is νs = k±νx. The polarization loss due to the horizontal intrinsic res-

onances [8] was explored in both simulations and experiments. This chapter presents

these results.

Additionally, in order to preserve the beam polarization, the vertical betatron

tunes have been pushed inside the spin tune gap generated by the two helical partial

snakes after Gγ = 5 (see Fig. 4.6 and Fig. 4.7). However, two initial weak intrinsic

resonances were still left uncorrected (for Gγ < 5) because the vertical tunes could

not be so high to maintain orbit stability of the lattice. Since the acceleration rate was

also slow, the two weak resonances could cause polarization loss [30]. With the vertical

tunes inside the spin tune gap after Gγ = 5 during the energy ramping, another type
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of depolarizing resonance called a partial snake resonance [31, 32, 33] could still occur

at some values of the vertical betatron tune, resulting in a reduced available tune space

with the two partial snakes. With vertical betatron tune close to the integer beam

polarization was also very sensitive to any closed orbit distortion [33]. Therefore,

experiments were developed to explore depolarization due to vertical motion, partial

snake resonance and closed orbit distortion. These experimental explorations and

data analyses will be discussed in this chapter.

4.1 Investigation of Horizontal Intrinsic Resonance

4.1.1 Simulation Results

The simulations of the horizontal intrinsic resonances were performed by two different

methods: one was a simplified analytic model, and the other was multi-particle spin

tracking using the program SPINK [34, 35]. Results were then compared to each

other. Our first attempt was to find a connection between the analytic and the

numerical model because the estimation of the horizontal resonance strength defined

in the simplified analytic model can not be directly obtained in spin tracking using

SPINK. In order to make a fair comparison, a special approach in the multi-particle

spin tracking was introduced. This will be mentioned in the following description.

I Simplified Analytic Model

The simplified analytic model is based on Thomas Roser’s estimate of each resonance

occurring whenever νs = n ± νx; if, as is the case, these resonances are very narrow

and well separated, the overall depolarization factor is just the product of the effective

Froissart-Stora factors for each of the resonances:

Pf

Pi
=

∏

n(γ)

1 − π|ε(γ)|2
α

1 + π|ε(γ)|2
α

, (4.1)
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where the product is over all the values of γ where the resonance occurs, and ε(γ) is

the resonance strength.

In this simple model the horizontal betatron motion is represented by a single

kick at the strong cold snake. Because the effect of a second weaker snake modulates

the resonance strength depending on the spin precession between the two snakes,

resulting in canceling the effect on average over many resonances and being ignored

in this model. The full horizontal oscillations in the rest of the ring have no effect on

the spin since the spin precession commutes with the precession in the main dipoles.

Note that this model therefore predicts that the horizontal resonances do not depend

on the super-periodicity of the lattice but only depend on the lattice function at the

snake. The horizontal resonance strength is given by the product of the horizontal

component of the stable spin direction Ph(Gγ) calculated from the OTM and the rms

value of the deviation of the total horizontal orbit angle Θ from 2π per turn at the

cold snake:

ε(γ) =
Gγ

2π
· Ph(Gγ) · Θ = K(γ) · √γ, (4.2)

where Θ =
√

(1+α2
x)·I0x

γβx
· sin(πνx), I0x is the normalized rms horizontal emittance, νx is

the horizontal betatron tune, αx and βx are the Courant-Snyder parameters in front

of the cold snake, K(γ) is a factor determined by the lattice and has a weak energy

dependence.

Identifying the M = e−iπνsn̂c·~σ with the OTM in front of the strong cold snake,

T = e−i 1
2
Gγ(2π− 2π

3
)σ3e−i χw

2
σ2e−i 1

2
Gγ 2π

3
σ3e−i χc

2
σ2 , (4.3)

the three components (cos Φ1, cos Φ2, cosΦ3) of the stable spin direction n̂c along the

radially outward, longitudinally forward and transversely vertical are obtained. The

horizontal component of the stable spin direction Ph(Gγ) in front of the cold snake

is calculated by

Ph(Gγ) =

√

(cos Φ1
2 + cos Φ2

2). (4.4)



36 4. Simulation and Experiment

Ph(Gγ) is the function of beam energy Gγ and the strengths χc and χw of the two

partial snakes. With the calculated Ph(Gγ) and ε(γ), the final polarization after

crossing n horizontal intrinsic resonances is given by Eq. (4.1).

II SPINK Tracking

Currently the program SPINK is the primary code used to do spin tracking with

a realistic AGS lattice. The general idea is to track a certain number of particles

in a phase space through the AGS machine lattice. Each proton has four transverse

coordinates, x, x
′
, y, y

′
(x and y are the horizontal position along the radially outward

direction and the vertical position of the proton, respectively), two longitudinal coor-

dinates, δφ = φ− φs, δp = p− ps (φ (φs), p (ps) are the phase angle and momentum

of the off-momentum particle (synchronous particle)), and three spin coordinates,

Sx, Sy, Ss (where S2
x + S2

y + S2
s=1). Given an initial condition, the consequent or-

bit and spin motion of each particle can be tracked using a transfer matrix of each

accelerator component.

Three output files provided by MAD8C [36] are used by SPINK : one is the .echo

file containing the first and second order 6 × 6 orbit transfer maps; one is the .twiss

file containing the closed orbit distortion (COD), the Courant-Synder parameters,

phase advance and dispersion functions for each element; and one is the .madout

file containing error tables. All of these files are read and combined by the SPINK

preprocessor madread to create a file .sy that contains the 6× 6 orbit transfer maps,

Twiss function, COD and any information about misalignment or field errors of ma-

chine component. The transfer matrices are also simplified with the use of an iterative

algorithm and routine due to F.Neri.

In the code, the particle orbit motion is transferred by the 6×6 symplectic matrices

R [36] computed at the entrance and exit of each element in a planar accelerator as
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following
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R =





























cx sx 0 0 0 Dx

c
′

x s
′

x 0 0 0 D
′

x

0 0 cy sy 0 0

0 0 c
′

y s
′

y 0 0

−D′

x −Dx 0 0 1 G

0 0 0 0 0 1





























. (4.6)

The explanation about the transfer matrix R is the following:

1. The subscripts of x and y correspond to the two transverse directions: the

horizontal and the vertical.

2. ci = cos(kil) and si = sin(kil)/ki are calculated by the machine elements with

ki focusing (or defocussing) strength. c
′

i and s
′

i are the derivatives of ci and si

(Here i = x, y).

3. Dx is the element’s dispersion component in the horizontal direction. D
′

x = dDx

ds

is the derivative of Dx.

4. −Dx and −D′

x represent the change of the longitudinal phase angle due to

horizontal dispersion.

5. G represents the change of longitudinal phase angle due to the momentum

spread.
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In the SPINK program, the transverse motions x and y are transformed by the

transfer matrices at different machine elements. Two methods can be used to describe

the transformation in the longitudinal motion. One is using the 6×6 transfer matrices

as mentioned above. The final phase angle is obtained not only from the momentum

spread but also from the horizontal motion due to the dispersion function.

Alternatively, for an accelerator with small horizontal dispersion function, the lon-

gitudinal motion can also be simply tracked by using Synchrotron Mapping Equations,

∆En+1 = ∆En + eV (sinφn − sinφs), (4.7)

∆φn+1 = ∆φn +
2πhη

β2E
∆En+1, (4.8)

where ∆En+1(∆En) is the energy deviation of the non-synchronous particle with

respect to the synchronous particle at its (n + 1)th (nth) passage through the RF

cavity, ∆φn+1 (∆φn) is the corresponding phase angle deviation with respect to the

synchronous particle, E = E0,n+1 = E0,n + eV sinφs is the energy of the synchronous

particle at its (n + 1)th passage through the RF cavity, η = 1/γ2
T − 1/γ2 is the

phase-slip factor. In this method, the RF electric field is treated as a single lumped

element in a synchrotron. The particle gains or loses energy when it passes through

the RF cavity, then the RF phase φn+1 depends on the new off-energy coordinate

∆En+1. In reality, there are phase change due to the horizontal dispersion. However,

the synchrotron mapping equations normally ignore this part for a synchrotron with

small horizontal dispersion, like AGS. Therefore, the Synchrotron Mapping Equations

are used during the spin tracking in this thesis.

For spin motion, the spin vector is transformed by the 3 × 3 matrix ST ,










Sx

Sy

Ss











= ST











Sx

Sy

Ss











, (4.9)

where Si(i = x, y, s) are three components of spin vector along the radially outward,

vertical and longitudinally forward direction, ST represents the spin matrix that is
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constructed from the BMT equation (See Appendix E)

d~S

ds
= ~S × ~w, (4.10)

with ~w as a function of the magnetic field in the machine component calculated at

the instantaneous position of the particle,

~w =
h

Bρ
[(1 +Gγ) ~B −G(γ − 1)(~r

′ · ~B)~r
′

], (4.11)

where h =
√

x′2 + y′2 + (1 + x/ρ)2 and ~r
′
= ~v

v
.

The spin matrix is given by [34]

ST =











1 − (a2
2 + a2

3)Cs a1a2Cs+ a3Sn a1a3Cs− a2Sn

a2a1Cs− a3Sn 1 − (a2
1 + a2

3)Cs a2a3Cs+ a1Sn

a3a1Cs+ a2Sn a3a2Cs− a1Sn 1 − (a2
1 + a2

2)Cs











. (4.12)

Here

a1 = wx

w0
= cos θ sinφ

a2 = wy−1/ρ
w0

= sin θ

a3 = ws

w0
= cos θ cosφ

(4.13)

with

w2
0 = w2

x + (wy −
1

ρ
)2 + w2

s , (4.14)

and

Cs = 1 − cosw0δs, Sn = sinw0δs. (4.15)

The components a1, a2, a3 are the precession axis, the latitude θ is the angle between

the vector and the horizontal plane, the azimuth φ is the angle formed by the pro-

jection of the ~w with respect to ŝ, δs is the orbit path length through the machine

element along the equilibrium orbit, and δΨ = w0δs represents the spin rotation angle

around it’s corresponding precession axis. SPINK has many entries of calculated spin

matrices for different types of machine elements, such as dipole, quadrupole, snake

etc.

There are two different ways to represent the Siberian snake and spin rotator:
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1. Synthetic

2. Snake Map

A synthetic snake (same to spin rotator) is defined in MAD file as a marker

that represents a thin element in orbit with a unit transfer map. The angle of spin

rotation µ and angles of the rotation axis θ, φ are given in the input file. The result

is that the snake only rotates the spin vector around the snake axis, while the orbit

is not affected. In the snake map, the snake is treated as a thick element, optically

represented by 6 × 6 snake transfer matrix. The snake transfer matrices are energy

dependent and obtained by tracking the particle trajectory through the numerical

field map calculated for the snake with the code OPERA. Therefore, in addition

to the spin rotation, the snake maps also give a contribution to the orbital motion

resulting in spin motion being revised due to the betatron phase.

III Comparison of Two Simulation Results

In the simplified analytic model, the product of the effective Froissart-Stora factors

through all the resonances gives the final polarization along the stable spin direction.

Once given the normalized rms horizontal emittance I0x, the horizontal betatron tune

νx, the Courant-Snyder parameters αx βx in front of the cold snake and the strengths

χc and χw of two partial snakes, the value of final polarization can be easily calculated.

However, the spin tracking using SPINK is more complicated because the mag-

netic field experienced by each particle in one beam bunch can be different due to

the particle’s trajectory. In order to simulate the real beam situation during the ac-

celeration, spin tracking was carried out with 100 Gaussian distributed particles in

the horizontal phase space and a rms momentum spread ∆p
p

= 0.003 initially. The

spin motion of each particle in the distribution would be different due to the betatron

motion. The final polarization was calculated as the average polarization of the 100

particles projected onto the stable spin direction.
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Spin tracking was started from finding the stable spin direction at the original

energy. This procedure was realized by setting the spin vector of the center particle

along the vertical direction, tracking the spin motion at the initial energy without

acceleration and averaging the three components of the spin vector respectively after

several thousand turns. All of the 100 particles were aligned along this initial stable

spin direction before tracking. In reality, the initial spin direction of each particle can

be slightly different, but the difference is small for the polarized proton beam in the

AGS and has little effect on the spin tracking.

To get more realistic simulation results, many preparations were done before track-

ing. First, since the AGS lattice changes during the acceleration, especially at the low

energies due to the setup of two partial snakes, MAD was run at different energies

to generate the lattices based on the real betatron tune. During spin tracking the

lattice was updated, more frequently at low energies than at high energies. Second,

the varied acceleration rates as shown in Chapter 3 Fig. 3.2 were extracted from the

real machine operation. The varied strengths of the two partial snakes as shown in

Fig. 3.4 and Fig. 3.5 respectively along the energy ramp were also obtained from the

fits of designed snake maps. All of these conditions have been prepared and used in

the simulations. In order to make a fair comparison, the Courant-Snyder parameters

αx and βx in front of the cold snake at different energies were read out from the same

lattices used in the SPINK tracking. This information was used in the simplified

analytic model, which gave the final polarization from Eq. (4.1).

Figure 4.1 shows both simplified analytic model and spin tracking results for two

partial snakes separated by 1/3 of the ring with two different snakes strength setups:

the top plot is for a 10% cold snake and 5.9% warm snake, the bottom one for a 14%

cold snake and 5.9% warm snake.

Zero vertical emittance was used to eliminate the residual polarization effect from

the vertical motion, and the horizontal betatron tune was set at 8.72. In general,

the polarization should stay constant or decrease monotonically if the components
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Figure 4.1: Simplified analytic model and multi-particle track-

ing with a Gaussian distribution in horizontal phase

space. The upper plot is for 10% and 5.9% partial

snakes; the lower one is for 14% and 5.9% partial

snakes. Both simplified analytic model and simulation

have the same normalized rms horizontal emittance,

zero vertical emittance and 8.72 horizontal tune. The

multi-particle tracking shows that the spin coherence

results in less polarization loss comparing to the sim-

plified analytic model.
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of spin motion transverse to the stable spin direction completely decohere between

resonance crossings. However, spin tracking shows spin coherence, which means spin

components after one resonance may be affected by the previous resonances. As

a result, the spin trackings give less polarization loss than the simplified analytic

model. This coherence can be seen in Fig. 4.1 as an increase of polarization after

some resonance crossings.

In order to compare the spin tracking to the simplified analytic model that treats

the horizontal resonances as isolated resonances during the energy ramping, one ap-

proach has been artificially used to remove spin coherence effects in the multiparticle

tracking by separating the spin tracking in several short energy ranges. Each time

before the re-started spin tracking, the stable spin direction was calculated at the

new start energy. All the particles were re-set along the stable spin direction. With

this method, the spin coherence phenomenon was eliminated in multiparticle spin

tracking. The final polarizations from the two models agrees well as shown in Fig.

4.2, the top plot is for 10% cold snake and 5.9% warm snake, the bottom one for 14%

cold snake and 5.9% warm snake. This result implies that the horizontal resonances

arise from the tilted stable spin direction with the partial snakes: more tilting away

from the vertical direction for 14% and 5.9% snakes causes stronger horizontal intrin-

sic resonances resulting in more polarization loss. The sudden polarization drop at

the last point is due to the slow acceleration rate, resulting from the current of the

magnetic field ramping down after arriving at the top energy of AGS. The discrep-

ancy between the spin tracking and the simplified analytic model in Fig. 4.1 is due to

the spin coherence. The agreement confirms the existence of the horizontal intrinsic

resonances in the AGS with two snakes by both methods. With this agreement, the

K(γ) value can be predicted from Eq. (4.2) given the snake strength and normalized

emittance.



44 4. Simulation and Experiment

0 5 10 15 20 25 30 35 40 45 50
Gγ

0.7

0.8

0.9

1

P

14%CS + 5.9%WS simplified analytic model
14%CS + 5.9%WS multi−particle tracking

0.7

0.8

0.9

1

P

10%CS + 5.9%WS simplified analytic model
10%CS + 5.9%WS multi−particle tracking

Figure 4.2: Spin tracking from both simplified analytic model and

multi-particle with Gaussian Distribution. The upper

plot is for 10% and 5.9% partial snakes; the lower one

is for 14% and 5.9% partial snakes. Both simplified an-

alytic model and simulation have the same normalized

rms horizontal emittance, zero vertical emittance and

8.72 horizontal tune. The spin coherence is artificially

removed from the multi-particle tracking.
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4.1.2 Experimental Results

The exploration of horizontal intrinsic resonances was carried out in the AGS 2006

polarized proton run. Two types of experimental methods, horizontal polarization

profile measurements and B-field scans, have been employed from the different points

of view. The two methods and data analyses are described in the following.

I Horizontal Polarization Profile

The intrinsic resonance strength is proportional to the square root of the particle

emittance I,

|ε(I)|2 = |ε(I0)|2
I

I0
, (4.16)

where I0 is the rms emittance of the beam, ε(I0) is the rms value of resonance strength.

For a beam with Gaussian distribution ρ(I) = 1
2I0
e
− I

2I0 in the phase space, the beam

polarization after passing through an intrinsic resonance is given by the integral of

the Froissart-Stora formula,

〈Pf

Pi
〉 =

∫ ∞

0

[2e−
π|ε|2

2α − 1]ρ(I)dI, (4.17)

or

〈Pf

Pi
〉 =

1 − π|ε(I0)|2
α

1 + π|ε(I0)|2
α

. (4.18)

The final polarization strongly depends on the rms resonance strength ε(I0). As

shown in Eq. (4.16) and (4.17), higher polarization is expected for the particles

with smaller emittance. Hence, a polarization profile in the horizontal plane, namely,

different polarization for particle at different horizontal emittance, is produced due

to the numerous horizontal spin resonances.

This horizontal polarization profile measurement was realized by using the CNI

polarimeter vertical target 3 to take the polarization measurement. Target 3 is a

vertically oriented thin target that moves horizontally. When the beam arrived at

the ”flattop” energy where the polarization was to be measured, the target 3 was
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moved into the polarimeter vacuum chamber and was set at a certain horizontal

position inside of the beam. For a complete polarization profile, a few polarization

measurements were taken by placing the target 3 at different horizontal positions.

In order to get accurate measurements, a target scan was taken before the po-

larization measurement to find the beams center and width. The following target

positions could be set at center or off-center by a few target steps, one target step

equals 0.19 mm in the AGS 2006 run. Since polarization measurements were some-

what time consuming, usually for each profile only five polarization measurements

were taken, two at each side of the beam center plus one at the beam center. The

two target positions closest to the beam center were set around the location of beam

rms size (1σ) that could be obtained from the target scan. In the AGS 2006 polarized

proton run the horizontal rms beam size (1σ) was approximately 1 mm, correspond-

ing to 5 target steps. Two more measurements were set at 2σ, which was 10 target

steps.

The count rate detected by the SSDs of AGS CNI polarimeter is the number of

events per elapsed time when the beam bunch crosses the carbon target. The total

events are given by summing the product of count rate and the elapsed time. In 2006,

a total of 40 million events are collected in each polarization measurement for data

analysis in order to reduce the statistical error. Since in each beam bunch there are

more particles around the beam center then away from the center, it takes less time

to collect data when the target is set at beam center, and it takes more time when the

target is away from the beam center. Hence, the display of the count rate per cycle at

different target locations gives the beam profile or the distribution of the particles in

the beam bunch. The beam profile verifies that the target was located at the correct

position, as well as the beam size. Because only one proton bunch is injected every

cycle, the intensity can be different for each cycle. In order to eliminate the effect of

intensity variation on the count rate, the beam profile is plotted using the count rate

normalized by the averaged beam intensity for each cycle.
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Therefore, in each horizontal polarization profile, two correlations are created :

one is the measured polarization as a function of the target position, and one for the

normalized count rate as a function of the target position in millimeters.

Two horizontal polarization profiles were measured at the Gγ = 45.5 for the

different cold snake strengths of 10% and 14%. The warm snake strength was kept

at 5.9% for both cases. The partial snake percentage quoted here is the strength at

the top energy. For a fair comparison between the two profiles, the beam intensity

was adjust to 1.0× 1011 proton/bunch and the beam size was measured as the same.

In order to get more accurate results, several polarization measurements taken

at the same target position were averaged. The statistic error was the least-squared

error given by σ = (
∑

1
(σi)2

)−
1
2 , where σi is the ith statistic error of the polarization

measurement. Target scans were also done frequently to locate and verify the target

was at the expected position. Table 4.1 lists the final values, which are graphed in

Fig. 4.3. Dots represent the 10% cold snake plus 5.9% warm snake configuration,

diamonds represent the 14% cold snake plus 5.9% warm snake configuration.

Table 4.1: Experimental data for horizontal polarization profile

measurements with two partial snakes at 10% plus 5.9%

and 14% plus 5.9%.

Target position Target position Polarization

(target unit) (mm) (10+5.9)% (14+5.9)%

snakes snakes

0 0 65.35 ± 0.89 59.39 ± 0.92

5 0.95 65.14 ± 1.26 57.36 ± 1.23

-5 -0.95 61.81 ± 0.95 53.49 ± 1.24

10 1.9 54.79 ± 1.44 46.95 ± 1.24

-10 -1.9 55.55 ± 1.27 45.00 ± 1.25
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Many different distribution functions for beams have been used in accelerator

physics. One needs to be chosen to give a reasonable description. Based on the figure

measured from the IPM (Ionization Profile Monitor), which is used to measure the

transverse profile of the circulating beam, a Gaussian distribution function is used to

fit the beam profile,

ρ(x) = A · e−
(x−x0)2

2σ2 , (4.19)

where A is the normalized count rate at the beam center, x0 is the beam center

position, and σ is the horizontal rms beam size. Table 4.2 lists the fitting results.

Table 4.2: Fitted parameters from beam profiles. A is the normal-

ized count rate at the beam center, x0 is the beam center

position, and σ is the horizontal rms beam size.

Fitting (10+5.9)% (14+5.9)%

parameters snakes snakes

A 591332 602327

x0(mm) 0.228 0.

σ(mm) 0.974 0.912

Based on the fitted rms beam size and the beam center position obtained from

the beam profile, the following assumptions were assumed in the deriving of the po-

larization: (i) depolarization effects due to the vertical coupling motion do not show

on the horizontal plane, (ii) the beam only crossed 82 isolated horizontal intrinsic

resonances during the acceleration based on the Eq. (4.18), (iii) the horizontal reso-

nance strength is proportional to the square root of the normalized horizontal beam

emittance. Since we can only measure the polarization vs the horizontal position, we

need to average the beam polarization over the conjugate phase space coordinate px:

〈Pf

Pi
〉 =

∫ ∞

0

[2e−
πK2γ

2α
· (x

2+p2
x)

σ2 − 1] × 1√
2πσ

· e−
p2
x

2σ2 dpx, (4.20)
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where px = βx
′
+αx is the normalized conjugate momentum and also has a Gaussian

distribution function, Eq. (4.16) is replaced by

|ε(I)|2 = |ε(I0)|2
I

I0
= K2γ · (x2 + p2

x)

σ2
, (4.21)

where (x,px) are the normalized conjugate phase-space coordinates, and I = x2+p2
x is

the action. The energy independent factor K = ε(γ)√
γ

is introduced in order to make a

comparison with the simplified analytic model. After the integral over px and crossing

the n isolated resonances, we obtain

〈Pf

Pi
〉 =

∏

n(γ)

[2 · e−
πK2γ(x−x0)2

α(γ)·2σ2 ·
√

1
πK2γ
α(γ)

+ 1
− 1], (4.22)

where Pf is the measured final polarization after the acceleration, and Pi is the fitted

initial polarization at injection. The relative polarizations shown in Fig. 4.3 are the

values of Pf divided by the Pi. α(γ) is the acceleration rate extracted from the AGS

cycle as shown in Chapter 3. x0 and σ are determined by fitting the beam profile.

Table 4.3: Fitted parameters from horizontal polarization profiles.

Pi is the initial polarization at injection and K = ε(γ)√
γ

is

the energy independent factor.

Fitting (10+5.9)% (14+5.9)%

parameters snakes snakes

Pi 68.49 ± 0.02 63.08 ± 0.02

K (2.17 ± 0.15) × 10−5 (2.61 ± 0.14) × 10−5

Table 4.3 lists the fitting results for the initial polarization Pi and energy inde-

pendent factor K. The error bars are from polarization statistical errors only. As

expected, a stronger partial snake gives a stronger horizontal spin resonance and leads

to more curvature in the polarization profile as shown on the polarization profile in

Fig. 4.3.
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Figure 4.3: Horizontal polarization profiles (upper) and horizon-

tal beam profiles (bottom) in the AGS for two different

strength of the partial snakes. The solid curves are for

10% cold snake and 5.9% warm snake, and the dashed

ones for 14% cold snake and 5.9% warm snake. The

beam profile curves are fitted using Eq. (4.19) and po-

larization profile curves are fitted using Eq. (4.22) after

crossing 82 isolated horizontal intrinsic resonances.
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The averaged weak energy dependent factor K(γ) can be calculated from the

simplified analytic model. In order to get the rms beam size σβ due to the betatron

oscillation, the part due to dispersion should be subtracted from the measured beam

size:

σ2
β = σ2 − (dx

∆p

p
)2, (4.23)

where σ is given from the measured rms beam profile, dx is the dispersion at the loca-

tion of polarimeter, and ∆p
p

is the momentum spread of the beam at the measurement

energy. The normalized rms horizontal emittance εNrms is obtained by:

εNrms = βγ · εrms = βγ ·
σ2

β

βx

. (4.24)

Here β,γ are the Lorentz factors, βx is the horizontal betatron amplitude at the CNI

polarimeter. The values of dx,
∆p
p

, β, γ and βx used in the calculation of rms beam

size σβ are shown in Table 4.4. Therefore, the normalized rms horizontal emittance

Table 4.4: Beam parameters used in the calculation of rms beam

size σβ due to the betatron motion.

dx(m) ∆p
p

βγ βx

1.66 0.0003 25.36 9.2

Table 4.5: Comparison ofK values between the calculation and the

fitting for two different partial snakes configurations.

(10+5.9)% (14+5.9)%

snakes snakes

Calculation 2.571 × 10−5 3.358 × 10−5

Fitting (2.171 ± 0.15) × 10−5 (2.606 ± 0.14) × 10−5

was 1.79 mm-mrad for 10% cold snake and 1.46 mm-mrad for 14% cold snake. The
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averaged K(γ) can be calculated from Eq. (4.2) respectively. Table 4.5 shows the

values of K from both calculation and fitting. Although the simplified model does

not agree exactly with the real lattice spin tracking result quantitatively, it is useful

to understand the polarization effect of the horizontal intrinsic resonances.

II B-field Scan

The magnetic rigidity of a beam is given by

Bρ[Tm] = 3.3357p[GeV/c], (4.25)

which generates the relationship between the beam energy and the machine main

dipole field. Here B is the main dipole field strength and ρ is the radius of curvature.

As discussed in Chapter 2, the spin tune νs, an important quantity describing the

spin motion, is determined by the beam energy. Since the spin tune characterizes

the location of spin depolarization, the relationship between the spin tune and beam

energy can be transferred to a relation between the spin tune and the machine’s main

dipole field B. Namely, by setting the main dipole magnetic field at different values,

the spin depolarization condition will or will not be satisfied while keeping a constant

vertical betatron tune. The result is that the measured beam polarization has a

profile with respect to the different main dipole field values. The polarization drop

happens when the resonance condition is satisfied. This B-field scan technique was

employed to explore horizontal intrinsic resonances during the AGS 2006 polarized

proton run.

Due to horizontal intrinsic resonances in the AGS, the depolarization happens

when the spin tune satisfies the condition νs = k ± νx, where νx is the horizontal

betatron tune, and νs is energy dependent spin tune calculated as shown in Chapter

2 with two partial snakes. For instance, in the most time of AGS 2006 run, the

horizontal betatron tune was set to 8.72 during the acceleration cycle. Therefore,

horizontal intrinsic resonance locations were expected at νs = 4.72, 5.28, 5.72 ...
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45.28, 45.72, 46.28 for the energy range Gγ = 4.5 to 46.5. The polarization is usually

measured at the AGS extraction energy, then a B-field scan can be carried out easily

at the flat top energy around Gγ = 46.5. At Gγ = 46.5, the main dipole field strength

B is usually set at 9.497 kGauss. The shift of dipole field can satisfy the depolarization

condition resulting in the beam depolarized.

The values of Gγ at the flat top energy are calculated from the set main dipole

field using the following formulas,

Bρ [Tm] = 3.3357p [GeV/c] (4.26)

E =
√

(pc)2 + (E0)2, γ = E/E0 (4.27)

with the AGS radius of curvature ρ = 85.378 m, the mass of proton E0 = 0.93827

GeV, and G = 1.7928 for the proton. In reality, for the real machine, the fluctuation

of main dipole field and uncertainty of ring radius results a discrepancy between real

value of Gγ and the calculated ones from the set main dipole field. Another approach

to get the calibrated Gγ values is from the measured RF frequency fRF and the AGS

ring radius R0 with the deviation ∆R0 by

v = 2π(R0 + ∆R0)fRF/h,

γ =
1

√

1 − β2
=

1
√

1 − ( v
c
)2
. (4.28)

Here v is the particle’s velocity, h = 12 the harmonic number of AGS and the ring

average radius is 128.45798 m.

Some of theGγ values calculated from the main dipole field and from RF frequency

in one B-field scan are listed in Table 4.6, which also lists the set point of the main

dipole fields, the measured RF frequencies, and the measured polarizations. The

maximum of the discrepancy of Gγ from the two meathods is less than 0.02, which is

acceptable. Figure 4.4 shows all the data from the B-field scans: the measured beam

polarizations as function of Gγ values, the black dots are for the calculated Gγ values

and the red diamonds are for the calibrated Gγ values.
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Table 4.6: Part of the B-field scan data.

Set B Gγ from B RF frequency Gγ from RF freq. diff.Gγ Polarization

9.2370 45.21 4.4537668 45.19954 0.01146 −40.50 ± 2.9

9.2570 45.31 4.4537816 45.30123 0.00750 −2.20 ± 2.9

9.2770 45.41 4.4537955 45.38869 0.01778 −53.90 ± 2.9

9.3170 45.60 4.4538253 45.58795 0.01400 −29.00 ± 2.9

9.3470 45.75 4.4538476 45.73255 0.01600 −47.00 ± 2.9

9.3870 45.94 4.4538773 45.92940 0.01463 −22.40 ± 2.9

9.4370 46.19 4.4539125 46.17603 0.01235 38.30 ± 2.9

9.4670 46.33 4.4539342 46.32216 0.01283 17.10 ± 2.9

9.5070 46.53 4.4539623 46.51187 0.01861 42.70 ± 2.9

9.5270 46.63 4.4539771 46.62001 0.00821 12.10 ± 2.9

1The first column lists the set points of the main dipole field in unit of kG, the second

column lists the calculated Gγ values using the set main dipole fields given in the first

column, the third column lists the measured RF frequencies in unit of MHz, the fourth

column lists the calibrated Gγ values using the RF frequencies, the fifth column shows the

difference between the calculated and the calibrated Gγ values, the last two columns give

the measured the polarizations and their statistical errors.
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Figure 4.4: One B-field scan from the AGS 2006 polarized proton

run. Black dots are for the calculated Gγ and red

diamonds are for the calibrated Gγ. The horizontal

betatron tune was around 8.64.
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Because the range of Gγ was between 45.2 to 46.7 and the measured horizontal

betatron tune νx was around 8.64 during the B-field scan, the depolarization was

expected to happen at Gγ = 45.36, 45.64, 46.36 and 46.64, which correspond to

the horizontal intrinsic resonance locations: Gγ = 54 − νx, Gγ = 37 + νx, Gγ =

55 − νx and Gγ = 38 + νx respectively. The figure clearly shows polarization drops

at these locations. Since the effect of the horizontal magnetic fields on the vertical

component of the beam polarization has been eliminated by putting the vertical

betatron tunes in the spin tune gap generated by the two partial snakes, only the

vertical magnetic fields can depolarize the horizontal component of the polarization.

Therefore, non-zero polarizations are expected at these resonance locations. However,

the zero polarization can be obtained if there is a vertical and horizontal motion

coupling or if some adjacent spin resonances are coherent to the horizontal intrinsic

resonances, resulting in the complete depolarization.

4.2 Investigation of Other Depolarizing Sources

4.2.1 Residual Vertical Intrinsic Resonances

In order to overcome the imperfection and intrinsic resonances, the vertical betatron

tunes have to be pushed inside the spin tune gap generated by the two helical partial

snakes. However, it is difficult to get high vertical tunes below Gγ = 5 since the

partial snakes cause large orbit and optics distortions near injection energy, resulting

in beam loss even with the compensation quadrupoles powered. The vertical betatron

tunes were below 8.92 before Gγ = 5, where two initial weak intrinsic resonances

(−4)+νy and 14−νy were located. Because the acceleration rate was also slow, these

two uncorrected weak resonances could cause some polarization loss. Therefore, in

addition to the horizontal polarization profiles, a vertical polarization profile was also
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measured to investigate the beam polarization loss due to the vertical motion.

The vertical polarization profile was carried out with 10% (2.1 T) cold snake

and 5.9% (1.53 T) warm snake operation by using the horizontally oriented target

2 that moved up and down in the polarimeter vacuum chamber. The procedure

of measurement was the same as for the horizontal profiles. Figure 4.5 shows one

of the vertical polarization profile measurements, combined with the corresponding

beam intensity profile from the normalized count rate. With the two helical partial

snakes separated by 1/3 of the ring, the generated spin tune gap is expected to be

large enough to overcome both imperfection and intrinsic resonances if the vertical

betatron tune during the acceleration cycle is completely moved inside the spin tune

gap. The polarization should have no effect from the beam vertical motion, which

means that the vertical polarization profile should be flat. However, the non-flat

vertical polarization profile implies that depolarization due to the vertical betatron

motion does exist during the acceleration in the machine.
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Figure 4.5: Vertical polarization profile (upper) and vertical beam

profile (bottom) in the AGS for the 10% cold snake and

5.9% warm snake configuration.
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To help identify the sources of depolarization shown in the vertical polarization

profile, a vertical betatron tune scan was taken over the whole acceleration cycle as

shown in Fig. 4.6. The plot shows both the fractional part of the measured vertical

tune and the spin tune with a 10% (2.1 T) cold snake and 5.9% (1.53 T) warm snake

as a function of Gγ for the whole energy ramp. There was difficulty for the vertical

tune to be pushed into the spin tune gap before Gγ = 5, which resulted in two initial

intrinsic resonances outside the spin tune gap.
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Figure 4.6: Fractional part of the measured vertical tunes (dots

are connected by a dashed line) and spin tune with

10% cold snake and 5.9% warm snake as a function of

Gγ.

One more detailed tune scan at the beginning part of acceleration was performed

to examine the vertical tunes in detail as shown in Fig. 4.7. At the two intrinsic
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resonance locations Gγ = 4.92 and Gγ = 5.08, the vertical betatron tune was 8.896

and 8.904, which gave resonance strength of ε1 = 1.3787×10−4 and ε2 = 1.0427×10−4

as calculated by the program DEPOL [11, 37]. Treating the two intrinsic resonances

as isolated and well separated, about 2% depolarization would be expected after

passing through both resonances according to

P =
1 − π|ε1|2

α1

1 + π|ε1|2
α1

×
1 − π|ε2|2

α2

1 + π|ε2|2
α2

. (4.29)

Here α1 = 1.10 × 10−5 and α2 = 1.50 × 10−5 are the acceleration rate crossing the

two intrinsic resonances, respectively.

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11
Gγ

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

ν s

Figure 4.7: Fractional part of the measured vertical tunes (dots

connected by a line) and spin tune with 10% cold snake

and 5.9% warm snake at the early part of the energy

ramp.
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Spin tracking using SPINK also confirmed the depolarization from the two in-

trinsic resonances. The tracking was performed using 100 particles with Gaussian

distribution in the vertical phase space with a normalized rms emittance 2.5 mm-

mrad, as well as a rms ∆p
p

= 0.003 momentum spread to eliminate the spin coherence

phenomenon. The horizontal emittance was set to zero to avoid any depolarizing

effect from the horizontal motion. The vertical tune path data came from Fig. 4.7,

and the real acceleration rate was taken from Fig. 3.2. In order to get rid of the

polarization loss from spin mismatching at injection, the spin direction was initialize

to the stable spin direction at injection energy. Figure 4.8 shows the tracking result
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Figure 4.8: Spin tracking through the first two weak intrinsic res-

onances with 10% (2.1 T) cold snake and 5.9% (1.53

T) warm snake. The polarization is obtained along the

stable spin direction.
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after crossing the two intrinsic resonances at Gγ = 4.92 and Gγ = 5.08 with 10%

(2.1 T) cold snake and 5.9% (1.53 T) warm snake. The polarization can lose 4% of

the initial 100%, including a 3% loss due to the crossing of the first resonance and

a 1% loss due to the second resonance. The strength of the two intrinsic resonances

can also be estimated from Fig. 4.8 by

Pf

Pi
=

1 − π|ε|2
α

1 + π|ε|2
α

to get ε =

√

√

√

√

1 − Pf

Pi

1 +
Pf

Pi

· α
π
, (4.30)

where
Pf

Pi
is the ratio of polarization after and before crossing the resonance. The

resultant strengths of the two resonance are ε1 = 2.1890×10−4 and ε2 = 1.1108×10−4

respectively, larger than the values from the DEPOL [11, 37]. The difference can be

explained by the following:

1. DEPOL is a code used to calculate the strength of the imperfection and intrinsic

resonances from the integral in Eq. (2.13), which is calculated by breaking it up

to sum over all the elements in the machine lattice. The vertical displacement,

including closed orbit distortion or betatron motion at each element, is obtained

from the information of the MAD output .twiss file. In the DEPOL program,

the snake has been treated as a drift space with no contribution to the vertical

orbit or spin precession, which in reality do change. Therefore, the resonance

strength given by DEPOL is not exactly correct, and is smaller than the value

that we have expected.

2. SPINK is a program that tracks the spin motion continuously during the energy

ramping. As shown in Fig. 4.8, the spin resonance overlapping does not need to

be considered since the separation of the two weak resonances satisfies ∆Gγ =

0.17 � max(|ε1|, |ε2|). However, the spin motion can still be affected by the

resonance it passed due to coherence, especially when two adjacent resonances

are not far away from each other. The depolarization effect can be enhanced
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and cause more or less polarization loss, depending on the interference of the

two resonances.

Therefore, the SPINK tracking is more realistic in describing spin motion during the

energy ramp. Based on the spin tracking result of 4% loss for the initial 100%, the

two resonances counted 3.4% loss to the injected 82% polarized proton beam in the

AGS 2006 polarized proton run.

Except for providing an estimated polarization loss through the two weak intrinsic

resonances, SPINK tracking provides a hint on how to reduce the depolarization by

separating the two resonances as widely as possible to eliminate the spin coherence.

Another important hint to reduce the polarization loss is to increase the effective

resonance crossing rate αc. If the vertical betatron tune keeps constant during the

acceleration, the effective resonance crossing rate αc equals the acceleration rate α.

However, the αc can be increased by changing the vertical betatron tune path during

the energy ramping as follows

αc =
d(Gγ − νy)

dθ
= α− α · dνy

dGγ
. (4.31)

Here α is the acceleration rate of AGS as mentioned before. The negative slope of

dνy

dGγ
expresses how much the αc has benefited.

Several spin trackings with different vertical tune paths were done based on the

above two ideas, as shown in Fig. 4.9, with 10% (2.1 T) cold snake and 5.9% (1.53

T) warm snake. Different colors represent different tune paths and the corresponding

spin trackings crossing the two weak intrinsic resonances. The first vertical tune

path (red color) is from the measured tunes in the AGS 2006 run and the others are

simulation.

Some important parameters extracted from spin trackings are listed in Table 4.7.

Using the lattice in each resonance, DEPOL gives the corresponding strengths of

intrinsic resonances shown in Table 4.8.
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Figure 4.9: Spin trackings through the first two weak intrinsic

resonances with different vertical tune paths. The po-

larization is obtained along the stable spin direction.

Table 4.7: Important parameters from four spin trackings with dif-

ferent vertical tune paths. Different colors represent dif-

ferent trackings as shown in Fig. 4.9.

Color First Resonance Second Resonance

Gγ Pf/Pi α αc ε Gγ Pf/Pi α αc ε

(10−5) (10−5) (10−4) (10−5) (10−5) (10−4)

red 4.915 0.973 1.10 1.10 2.1890 5.081 0.993 1.50 1.50 1.2950

magenta 4.875 0.987 0.67 1.15 1.5476 5.188 0.999 1.53 1.40 0.4722

maroon 4.827 0.993 1.00 2.00 1.4953 5.177 0.998 1.54 2.70 0.9275

orange 4.814 0.993 1.04 1.43 1.2644 5.211 0.999 1.57 4.05 0.8031
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Table 4.8: Calculated strengths of the two intrinsic resonances

from DEPOL with different vertical tune paths.

Color First Resonance Second Resonance ∆Gγ

Gγ ε(×10−4) Gγ ε(×10−4)

red 4.915 1.3787 5.081 1.0427 0.166

magenta 4.875 1.3193 5.188 0.8773 0.313

maroon 4.827 1.2682 5.177 0.8822 0.350

orange 4.814 1.2577 5.211 0.8645 0.397

The observations can be summarized as follows:

1. The calculated strengths of spin resonances from DEPOL are less than the

values from spin tracking because of the treatment of snakes as drift spaces

in the DEPOL program. This can lead to a maximum 1.6% difference of the

polarization loss.

2. Both of the two intrinsic resonances are weak resonances and the second one is

much weaker than the first one. All of four separations of the two resonances are

large enough to eliminate the spin resonance overlapping, because of ∆Gγ �
max(|ε1|, |ε2|), but may still leave the spin coherence effect, especially for the

most realistic case (red color).

3. The strength of a spin intrinsic resonance close to an integer is larger than the

one far from the integer.

4. With an appropriate vertical tune path, the polarization loss can be reduced by

2% after crossing the first intrinsic resonance comparing the first spin tracking

(red color) to the fourth spin tracking (orange color). The large separation of

the two resonances can reduce the spin coherence effect on the polarization while

crossing the second resonance because there is more time for the components
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perpendicular to the stable direction to decohere. At least 3% polarization can

be rescued through the two weak intrinsic resonances.

Therefore, a modest reduction of polarization loss from crossing the first two weak

intrinsic resonances can be obtained by selecting an appropriate vertical tune path if

vertical betatron tune can not be placed inside the spin tune gap.

4.2.2 High Order Partial Snake Resonances

With two partial snakes in the AGS, the spin tune νs depends on energy and partial

snake strengths as given in Eq. (2.37). Although the vertical tunes have been placed

into the spin tune gap, the partial snakes themselves can still provide a mechanism for

depolarization, called partial snake resonance [38, 39, 31, 32, 33]. The partial snake

resonance occurs when

νs + kνy = integer, (4.32)

where νy is the vertical betatron tune and k > 1 is an integer. The spin kick coherent

to the condition of the partial snake resonance due to the fact that the intrinsic

resonance strength in the tracking demonstration is non-zero. Therefore, the partial

snake resonance strength is proportional to the strength of the intrinsic resonance

strength. Table 4.9 lists the strengths of the four strong intrinsic resonances calculated

Table 4.9: Strengths of four strong intrinsic resonances calculated

by DEPOL in the bare AGS machine assuming particle

at a normalized rms emittance 2.5 mm-mrad.

P(GeV/c) Gγ ε

4.871 0 + νy 0.0075

11.565 12 + νy 0.0026

15.208 36 − νy 0.0069

24.951 36 + νy 0.0133
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using DEPOL assuming a single particle at a normalized rms emittance 2.5 mm-mrad

ellipse in the bare AGS machine (“bare” means the machine lattice is constructed only

by the combined function of bending magnets and the tune quadrupoles). The partial

snake resonance can easily happen in the vicinity of the strongest intrinsic resonance

at 36 + νy, and may also happen at the weakest one at 12 + νy.

Because the vertical betatron tunes have been moved into the spin tune gap at all

four strong intrinsic resonances in the AGS, the intrinsic resonance at k = 1 can easily

be avoided. However, the high order partial snake resonances can be experienced by

the particle within the reduced tune space.

The measurements of polarization as a function of vertical tune, called vertical

tune scans, were carried out to investigate the effect of high order partial snake reso-

nance on the polarization. Beam polarizations were measured at the AGS extraction

energy and the machine setup was kept similar during the tune scans. Figure 4.10

presents two tune scans at intrinsic resonance positions 12+ νy and 36+ νy with 14%

(2.5 T) cold snake plus 5.9% (1.53 T) warm snake. More curvature has been shown

at the tune scan around 36 + νy location because the strength of the partial snake

resonance is proportional to the strength of the intrinsic resonance. One more vertical

tune scan at the moderately strong intrinsic resonance position 36 − νy is shown in

Fig. 4.11 (A tune scan at 12 + νy is included for comparison).

The polarization drop with νy ≤ 8.9 appears when the vertical tune is moved

outside of the spin tune gap. At the four strong intrinsic resonance locations 0 + νy,

12 + νy, 36 − νy, 36 + νy with the two snakes, the high order partial snake resonance

positions are listed in Table 4.10, and agree with the experimental results. The high

order partial snake resonances do not show a significant effect on the polarization and

the polarization reaches a plateau when the vertical tune is above 8.96 at 12+ νy and

36−νy. The strongest intrinsic resonance at 36+νy shows the effect of the polarization

from the second, third and fourth order partial snake resonance. As expected, the

higher order of the resonance, the less polarization dip due to the weaker resonance
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Figure 4.10: Vertical tune scan at 12 + νy (weaker) and 36 + νy

(stronger) intrinsic resonance position for 14% (2.5T)

cold snake plus 5.9% (1.53T) warm snake.
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Figure 4.11: Vertical tune scan at 12 + νy and 36 − νy with 14%

(2.5T) cold snake and 5.9% (1.53T) warm snake.
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Table 4.10: High order partial snake resonance locations for both

10% (2.1 T) cold snake plus 5.9% (1.53 T) warm snake

and 14% (2.5 T) cold snake plus 5.9% (1.53 T) warm

snake conditions.

Condition νy

Snakes Resonance Location l=2 l=3 l=4 l=5

2.1T cold snake 0 + νy 0.951 0.972 0.981 0.985

& 12 + νy 0.953 0.974 0.981 0.985

1.53T warm snake 36 − νy 0.953 0.974 0.981 0.985

36 + νy 0.953 0.974 0.981 0.985

2.5T cold snake 0 + νy 0.937 0.961 0.972 0.977

& 12 + νy 0.941 0.965 0.974 0.979

1.53T warm snake 36 − νy 0.941 0.965 0.974 0.980

36 + νy 0.941 0.965 0.974 0.980

strength.

Spin trackings for the investigation of high order partial snake resonances at the

strongest intrinsic resonance 36 + νy are completed with the following conditions: (i)

100 particles with 2.5 mm-mrad normalized rms emittance for a Gaussian distribution

in the vertical phase space only, (ii) the vertical betatron tunes are set at the third,

fourth and fifth order partial snake resonance locations respectively, (iii) the energy

ramping starts from Gγ = 43.5 to Gγ = 46.5, crossing the strong intrinsic resonance

at Gγ = 36 + νy, (iv) realistic acceleration rate and machine lattice are used for spin

tracking. The performance of the vertical component of polarization is shown in Fig.

4.12 with 14% cold snake and 5.9% warm snake and in Fig. 4.13 with 10% cold snake

and 5.9% warm snake. The simulations confirm the existence of high order partial

snake resonances at 36+νy, and the polarization dip is negligible above the fifth order

partial snake resonance when the vertical betatron tune is beyond 8.98 for 14% cold



70 4. Simulation and Experiment

43.5 44 44.5 45 45.5 46 46.5
Gγ

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sy

43.5 44 44.5 45 45.5 46 46.5

−1

−0.5

0

0.5

1

Sy

8.941 (2)

8.974 (4)

8.98  (5)

8.965 (3)

Figure 4.12: Spin tracking with constant vertical betatron tunes

located at high order partial snake resonance loca-

tions with 14% (2.5T) cold snake and 5.9% (1.53T)

warm snake.
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Figure 4.13: Spin tracking with constant vertical betatron tunes

located at high order partial snake resonance loca-

tions with 10% (2.1T) cold snake and 5.9% (1.53T)

warm snake.
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snake and 8.985 for 10% cold snake.

Vertical tune scans at these strong intrinsic resonance locations, combined with

the spin tracking simulations, give a guide where the vertical tune should be put to

preserve the polarization with the reduced space limit. In conclusion, the vertical

tunes have to be pushed above 8.98 at 36 + νy and above 8.96 at 12 + νy and 36− νy

with 14% cold snake and 5.9% warm snake. However, with the vertical tune beyond

8.99, the associated orbit distortion is likely another reason to cause the polarization

drop as discussed in the following section.

4.2.3 Closed Orbit Distortion

With the vertical betatron tune pushed close to integer 9 at the flattop energy in the

AGS, the beam polarization becomes sensitive to the associated large closed orbit

distortion.

In an accelerator, the vertical closed orbit amplitude is given by

yco(s0) =

√

β(s0)

2 sinπνy

∮

√

β(s) cos(πνy + ψ(s0) − ψ(s))
∆B

Bρ
ds. (4.33)

Here β(s0) and ψ(s0) are respectively the β function and phase at the measured s0

location. β(s), ψ(s) and ∆B
Bρ
ds = dθ are respectively the β function, phase and kick

angle caused by the field error at s location. ν is the vertical betatron tune. As seen

from Eq. (4.33), the closed orbit is greatly enhanced when the vertical betatron tune

is close to an integer. Because the imperfection resonance

εK =
1 +Gγ

2π

∮ ∂Bz

∂x

Bρ
yco(s)e

iKθds (4.34)

is proportional to the closed orbit amplitude yco and beam energy Gγ, the imperfec-

tion resonance can still be an important depolarization source at high energy even

with two partial snakes installed. The near integer vertical tune makes the effect of

the 9th harmonics much stronger. If the effect of partial snakes and a strong im-

perfection resonance is out of phase, the resulting effective strength is weaken, and
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the spin tune gap becomes too small to preserve the polarization. The imperfection

resonance with large orbit distortion can cancel the effect of the two partial snakes.

Experimentally, we did observe polarization loss due to the closed orbit distortion.

Measured Polarization as a function of sin 9θ harmonic orbit amplitude at 36 + νy is

shown in Fig. 4.14.
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Figure 4.14: Measured polarization as a function of vertical sin 9θ

harmonic amplitude.

Estimated imperfection resonance strengths, around Gγ = 36 + νy where the

vertical tune is beyond 8.989, for the AGS lattice with different sin 9θ harmonic

amplitudes are given in Table 4.11 and shown in Fig. 4.15. The choice of sin9th

harmonic amplitudes comes from the experiment data and these resonance strengths

can be strong enough to be comparable to the two partial snake strengths.

Spin tracking sweeping the energy at Gγ = 36 + νy are used to investigate the

beam polarization with these different closed orbit distortions of the sin 9θ harmonic
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Table 4.11: AGS imperfection resonance strengths calculated us-

ing DEPOL with different closed orbit distortions and

vertical tune close to 9 at Gγ = 36 + νy.

The sin9th harmonic Imperfection resonance rms orbit distortion

amplitude (mm) strength εK at Gγ = 36 + νy (mm)

-16 0.04512540 10.4863

-12 0.08325239 7.7819

-10.5 0.08786251 6.5573

-8.2 0.06274099 5.8790

-6.4 0.04938734 4.6127

-4.0 0.03112522 2.8979

-2.4 0.01874080 1.7426

-0.6 0.00469420 0.4362

0 0 0

2.5 0.01952357 1.8153
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Figure 4.15: Imperfection resonance strengths calculated using

DEPOL as a function of different vertical sin 9θ har-

monic amplitude at 36 + νy.

amplitudes. 100 particles with normalized rms emittance 2.5 mm-mrad in the vertical

phase space and rms momentum spread ∆p
p

= 0.001 in the longitudinal phase space

were chosen for these simulations. These spin trackings were from Gγ = 44.5 to Gγ =

45.5, only crossing the imperfection resonance at Gγ = 45. The comparison of the

polarization as a function of vertical sin9th harmonic amplitude crossing the imper-

fection resonance at Gγ = 45 between the spin trackings and experiments is shown

in Fig. 4.16. The relative polarization is given by Pf/Pi, where Pf and Pi are the

polarization after and before resonance. Depolarization happens with the amplitude

expected from the calculation. The disagreement of the relative polarizations at some

amplitudes comes from the complexity of the real closed orbit distortions, which also

have the contribution from other nth harmonic amplitudes.



76 4. Simulation and Experiment

−20 −15 −10 −5 0 5
Vertical sin9th harmonic amplitude (mm)

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

P
f/P

i

Spin Tracking
Experiment

Figure 4.16: Comparison of the polarization vs. the vertical sin 9θ

harmonic amplitude while crossing the imperfection

resonance at Gγ = 45 between spin tracking and ex-

periment. The vertical axis is the ratio of polarization

after and before resonance, the horizontal axis is the

vertical sin9th harmonic amplitude. The locations

of polarization dip agree well between the simulation

and experiment.
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Chapter 5

Summary and Solution

5.1 Summary

Polarized proton beam can lose their beam polarization when encountering spin de-

polarizing resonances in a synchrotron. Two main resonances are classified as im-

perfection resonances when the spin tune equals an integer, and intrinsic resonances

when the spin tune equals nP ± νy, where P is the super periodicity of the accelera-

tor and νy is the vertical betatron tune. Special approaches have to be introduced to

overcome these spin resonances and maintain the beam polarization. One solution is

to use Siberian snake. The rotation of spin vector caused by Siberian snakes breaks

up the resonance conditions, resulting in the preservation of the polarization.

For a full Siberian snake precessing the particle spin by 1800 about an horizontal

axis, the spin tune becomes 1
2
. This particular spin tune can avoid the two spin reso-

nance conditions caused by the magnetic field error. Since the depolarizing resonance

strength in a medium energy synchrotron is not very strong, a strong enough partial

snake, which needs less space, can generate a large enough spin tune gap to overcome

both imperfection and intrinsic resonance, as long as the vertical tune is placed inside

the spin tune gap. The only challenge is to maintain the betatron tune close to an
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integer. The use of two partial helical dipole snakes, called warm partial snake and

cold partial snake respectively, in the AGS has proved this concept.

The intention of using two partial snakes separated by 1/3 of the ring comes from

two considerations:

1. One strong partial snake can introduce non-negligible polarization loss due to

the spin direction mismatching at the injection and extraction energies. An

additional partial snake can reduce the spin direction mismatching and also

increase the effective partial snake strength if its position is chosen properly.

2. Separating the two partial snakes by 1/3 of the ring introduces a periodicity of

three units in the spin tune dependence of Gγ. Since both the super- periodicity

of the AGS (P = 12) and the vertical betatron tune (νy ∼ 9) are divisible

by three, the spin tune gap is largest at Gγ = 3n where the strong intrinsic

resonances are located.

With the 10% (2.1 T) cold partial snake and 5.9% (1.53 T) warm partial snake, the

polarization at AGS extraction reached the high polarization of 65% with the injected

82-86% in 2006 polarized proton run. However, there was still a 20% polarization loss.

Several depolarizing sources, existing in the current AGS machine status, are classified

as following:

1. Horizontal Intrinsic Resonance — Generally, the spin intrinsic resonance only

happens at Gγ = nP ± νy, associated with the vertical betatron tune νy where

the vertical polarization is affected by the horizontal magnetic fields. However,

the stable spin direction will not be vertical any more with the presence of the

partial snakes. Therefore, the perturbing fields that rotate the spin away from

the stable spin direction have vertical as well as horizontal component. Particles

undergoing horizontal betatron oscillation encounter vertical field deviation at

the horizontal oscillation frequency. As a result, the spin resonance occurs
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whenever the spin tune satisfies νs = n±νx, and this type of resonance is called

horizontal intrinsic resonance.

2. Residual Vertical Intrinsic Resonance — Four compensation quadrupoles for

each partial snake have been added to eliminate the lattice distortion caused

by the partial snake magnets especially at the low energies, with the result that

the vertical betatron tunes can only be pushed into the spin tune gap after

Gγ = 5. Although two remaining intrinsic resonances below Gγ = 5 are weak,

they are enhanced by the slow acceleration rate at the beginning of the ramp

and can account for at least 4% polarization loss. The spin coherence between

the two adjacent resonances may enhance the depolarizing effect, resulting in

more depolarization after crossing them.

3. High Order Partial Snake Resonance — Partial snake resonances happen at

νs ± Kνy = integer, where νs is the spin tune with the partial snake(s), νy is

the vertical betatron tune and K is an integer. Since the vertical betatron tunes

have been moved into the spin tune gap after Gγ = 5, the intrinsic resonance (or

called the first order partial snake resonance) can easily be avoided. However,

higher order partial snake resonances can still cause depolarization the beam,

especially in the vicinity of the strong intrinsic resonances, because the snake

resonance strength is proportional to the strength of the nearby intrinsic res-

onance. The polarization gets much worse when the vertical tune meets these

high order partial snake resonance conditions during the energy ramp.

4. Enhanced Imperfection Resonance — When the vertical betatron tune is beyond

8.99, the closed orbit distortion is greatly enhanced. Since the imperfection res-

onance strength is proportional to the closed orbit distortion and beam energy,

an imperfection resonance can cancel the effect of two partial snakes resulting

in a significant polarization drop.
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The above spin sources of depolarization have been investigated during AGS 2006

polarized proton run. Horizontal polarization profile measurements were used to

explore the horizontal intrinsic resonance; vertical polarization profile measurements

were used to explore polarization loss due to the beam vertical motion; vertical tune

scans in the vicinity of the strong intrinsic resonances were employed to explore the

high order partial snake resonance, and a vertical 9th harmonic amplitude scan was

carried out to explore the enhanced imperfection resonance due to the large closed

orbit distortion when the vertical betatron tune was close to the integer 9. All of

the relationships between the polarization and the depolarizing source were clearly

observed in these experiments as described in Chapter 4.

To quantify these polarization losses, more realistic spin trackings were done for

the different cases. In order to explore the depolarization due to the horizontal intrin-

sic resonance, the particles were given a Gaussian distribution only in the horizontal

phase space with a momentum spread to eliminate the spin coherent phenomenon.

A similar condition was given to explore spin depolarization due to vertical motion,

except the particles were distributed in vertical phase space. For the investigation

of partial snake resonances, the spin trackings were focused at the top energy range

where the vertical betatron tunes were moved into the spin tune gap.

In summary, spin trackings show ∼ 6% polarization loss due to the horizontal

intrinsic resonance, ∼ 4% due to the residual vertical intrinsic resonance, ∼ 3% due

to the high order partial snake resonance with a 10% (2.1 T) cold snake and 5.9%

(1.53 T) warm snake. In addition, there were 2 ∼ 3% polarization loss due to the spin

mismatching at injection. The effect of closed orbit distortion on the polarization can

be overcome in the machine operation.



5.2 Solution 81

5.2 Solution

Although the historically highest polarization of 65% has been achieved by the in-

stallation of the two partial helical dipole snakes in the AGS, the stated goal of 70%

polarization is required by the RHIC spin program. A further study will focus on

overcoming all causes of beam depolarization. Different schemes have been proposed

aiming at different depolarizing mechanisms as described below and several will be

carried out in the future runs. Before that, preliminary simulations have also been

developed to give guidance.

1. To overcome the horizontal intrinsic resonance, the horizontal betatron tunes

need to be also pushed up inside the spin tune gap generated by the two partial

helical dipole snakes. One simple spin tracking was done by putting one parti-

cle at 2.5π mm-mrad normalized emittance ellipse in the horizontal phase space

and zero vertical emittance to eliminate the effect on the polarization due to

the vertical motion. The horizontal tune was set at 8.985 inside the spin tune

gap generated by 10% (2.1 T) cold snake and 5.9% (1.53 T) warm snake. Spin

tracking results are shown in Fig. 5.1. The blue straight line is the polarization

projected to the stable spin direction, the red curve exhibits the vertical com-

ponent of the polarization following the stable spin direction with three unit

periodicity. The results indicate that there is no polarization loss during the

energy ramping with the horizontal tune inside the spin tune gap.

In reality, the challenge for AGS to push the horizontal tune high enough is the

limit of the current in the family of 12 tune quadrupoles. A higher betatron

tune demands higher current. The maximum available current in the horizontal

quadrupoles is 700 A that constraints the maximum horizontal tune to be about

8.83 at the top energy. This problem can be solved (partially) by adding 12

unused quadrupoles to the vertical quadrupoles string. With increased tolerance

of vertical betatron tune, the horizontal betatron tune can be pushed from 8.82
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to 8.95. [40]. In addition, the radius shift [41] towards the inside of the ring

enhances the increase of the horizontal tune.
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Figure 5.1: A simple spin tracking by putting one single particle

at the normalized rms emittance 2.5π mm-mrad ellipse

in the horizontal phase space. The horizontal tune was

set at 8.985 inside the spin tune gap generated by 10%

(2.1 T) cold snake and 5.9% (1.53 T) warm snake. The

tracking result shows no depolarization.

2. To overcome two weak intrinsic resonances before Gγ = 5, the most direct

method is to push the vertical tunes high enough to be in the spin tune gap.

However, this approach is difficult at injection because the large lattice and

orbit distortions caused by the partial snakes do not allow a vertical tune above

8.95 with beam survival, even though four compensation quadrupoles for each

of partial snake have been added for optics correction. Another approach to

reduce the polarization loss can be increasing the acceleration rate based on the
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Froissart-Stora formula. This is also not practical because a quick acceleration

rate needs a change of the ramping magnet function, which is not reasonable

for the AGS power supply. A more flexible approach is to lower the vertical

tunes when the beam crosses the two resonances. One advantage of this is to

separate the two resonances far away from each other to eliminate any spin

coherence effect, and another is to raise the effective resonance crossing rate.

A simulation of 100 particles with Gaussian distribution in the vertical phase

space was performed with the lower vertical tune path set as shown in Fig. 5.2.

The polarization loss after crossing the two weak intrinsic resonances should be

reduced to less than 1%.

3. Since the second and third order partial snake resonances in the vicinity of

strong intrinsic resonance 36 + νy are still strong enough to cause a modest

polarization loss, the vertical betatron tune should be pushed as high as possible

inside the spin tune gap. In the AGS 2006 polarized proton run, the vertical

tunes have been pushed above 8.98 after Gγ = 7.5, even beyond 8.99 at 36+ νy

strong intrinsic resonance position in order to preserve the polarization.

4. When the vertical tune is above 8.99 at 36+ νy that is close to the imperfection

resonance at Gγ = 45, the associated large orbit distortion can contribute to

polarization loss as described in Chapter 4. The depolarization due to the closed

orbit distortions can be eliminated with harmonic orbit correction. Local bumps

at Gγ = 36 + νy have been used to correct the orbit distortion. As long as the

sin 9θ harmonic orbit amplitude is less than 3 mm, polarization is preserved.
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Figure 5.2: Spin tracking of 100 particles with Gaussian distri-

bution in the vertical phase space. The normalized

rms vertical emittance was set at 2.5π mm-mrad, and

zero for the horizontal emittance. The upper plot is

the vertical tune path. The bottom plot is the track-

ing result, which shows significantly less depolarization

comparing to Fig.4.8.
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Appendix A

Transverse and Longitudinal

Component of Magnetic Field with

Respect to the Beam Direction

The particle motion in an accelerator can be expressed in the Frenet-Serret coordinate

system (x̂, ŝ and ŷ) as

~r = ~r0(s) + xx̂ + yŷ. (A.1)

Here ρ is the local radius of curvature of the reference orbit.

Then the velocity and the derivative of the velocity of a particle is given by

~v =
d~r

dt
=
ds

dt
[x

′

x̂+ (1 +
x

ρ
)ŝ + y

′

ŷ] ≈ v(x
′

x̂+ ŝ + y
′

ŷ), (A.2)

~v
′

= v[(x
′′ − 1

ρ
)x̂+

x
′

ρ
ŝ+ y

′′

ŷ]. (A.3)

Here the prime denotes differentiation with respect to the coordinate s. The magni-

tude of the particle velocity is

v =
ds

dt
[(1 +

x

ρ
)2 + x

′2 + y
′2]1/2 ≈ ds

dt
(1 +

x

ρ
), (A.4)
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and
ds

dt
=

v

(1 + x
ρ
)
. (A.5)

Using the relation

mγ
d~v

dt
= e~v × ~B, Bρ =

γmv

e
, (A.6)

we have

~B⊥ =
1

v2
(~v × ~B) × ~v =

1

v2

mγ

e

d~v

dt
× ~v =

1

v2

mγ

e

ds

dt

d~v

ds
× ~v

=
1

v2

mγ

e

v

(1 + x
ρ
)
v2[(x

′′ − 1

ρ
)x̂ +

x
′

ρ
ŝ+ y

′′

ŷ] × [v(x
′

x̂ + ŝ+ y
′

ŷ)]

= Bρ(1 − x

ρ
)[(x

′′ − 1

ρ
)ŷ − (x

′′ − 1

ρ
)y

′

ŝ+
x

′
y

′

ρ
x̂− x

′2

ρ
ŷ + y

′′

x
′

ŝ− y
′′

x̂]

≈ Bρ(1 − x

ρ
)[(x

′′ − 1

ρ
)ŷ +

1

ρ
y

′

ŝ− y
′′

x̂]. (A.7)

Here the high order terms have been ignored.

The contribution to longitudinal component of magnetic field come from two

sources: one is from the variance of radius curvature and the other from the ver-

tical orbit. Since the dipole guide field is given by Bz = −Bρ
ρ

, the magnetic field

parallel to the particle orbital direction is given by

~B‖ = (Bs + y
′

By)ŝ = (−Bρy(1

ρ
)
′ − y

′Bρ

ρ
)ŝ = −Bρ(y

ρ
)
′

ŝ (A.8)
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Appendix B

Effective Froissart-Stora Formula

for a Gaussian Distribution Beam

Given a beam bunch has Gaussian distribution

ρ(I) =
1

2I0
e
− I

2I0 , (B.1)

and the intrinsic resonance strength is proportional to the square root of the particle

emittance I

|ε(I)|2 = |ε(I0)|2
I

I0
, (B.2)
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where I0 is the rms emittance of the beam, ε(I0) is the rms value of resonance strength,

the polarization after passing through a resonance is given by

〈Pf

Pi
〉 =

∫ ∞

0

[2e−
π|ε|2

2α − 1]ρ(I)dI

=

∫ ∞

0

[2e−
π|ε(I0)|2 I

I0
2α − 1]

1

2I0
e
− I

2I0 dI

=
1

2I0
[

∫ ∞

0

2e
−(

π|ε(I0)|2

α
+1) I

2I0 dI −
∫ ∞

0

e
− I

2I0 dI]

=
1

2I0
[2

−2I0

1 + π|ε(I0)|2
α

e
−(

π|ε(I0)|2

α
+1) I

2I0 |∞0 + 2I0e
− I

2I0 |∞0 ]

=
−2

1 + π|ε(I0)|2
α

(0 − 1) + (0 − 1)

=
1 − π|ε(I0)|2

α

1 + π|ε(I0)|2
α

(B.3)
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Appendix C

Spinor Equation

The spin vector ~S with three components (S1, S2, S3) can be expressed by a two-

component spinor Ψ as

Si = 〈Ψ|σi|Ψ〉 = Ψ†σiΨ, (C.1)

where σi, i = 1, 2, 3 are the Pauli matrices.

Assume the spinor satisfies the Hamiltonian equation:

dΨ

dθ
= − i

2
HΨ,

dΨ†

dθ
=
i

2
Ψ†H, (C.2)

where H is a Hermitian operator satisfying H = H †, then

dSi

dθ
=

dΨ†

dθ
σiΨ + Ψ†σi

dΨ

dθ

=
i

2
Ψ†(Hσi − σiH)Ψ

=
i

2
Ψ†[H, σi]Ψ. (C.3)

Since any 2× 2 unitary matrix can be expressed as a linear combination of the three

Pauli matrices as
dΨ

dθ
= −iλ

2
(~σ · n̂)Ψ, (C.4)

where n̂ is a unit vector and λ is a θ independent factor, it has H = λ(~σ · n̂). Then
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Eq.(C.3) is rewritten as

dSi

dθ
=
i

2
Ψ†[λ(~σ · n̂), σi]Ψ =

i

2
λΨ†[~σ · n̂, σi]Ψ. (C.5)

With the relationships

σiσj = 1, for i = j;

σiσj = iεijkσk, for i 6= j,

we have

[σi, σjnj] = [σi, σj]nj = 0, i = j;

[σi, σjnj] = [σi, σj]nj = 2iεijknjσk = 2i(n̂× ~σ)i, i 6= j.

Then Eq.(C.5) becomes

dSi

dθ
=
i

2
λΨ†[2i(n̂× ~σ)]Ψ = (λn̂× Ψ†~σΨ)i = (λn̂× ~S)i = (~S × (−λ~n))i. (C.6)

Comparing with d~S
dθ

= ~S × ~F (Eq. (2.8)) , we can obtain

~F = −λn̂, H = −~σ · ~F . (C.7)

Therefore, the spinor equation is

dΨ

dθ
= − i

2
HΨ =

i

2
~σ · ~FΨ

= − i

2
[Gγσ3 − F2σ2 − F1σ1]Ψ

= − i

2





Gγ F1 − iF2

−(F1 + iF2) −Gγ



 Ψ

= − i

2





Gγ ξ

−ξ? −Gγ



 Ψ. (C.8)
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Appendix D

Horizontal Component of the

Stable Spin Direction

Considering two partial snakes separated by 1/3 of the ring with χc and χw spin

rotation angles respectively, the OTM is given by

T = e−i 1
2
Gγ(2π− 2π

3
−θ)σ3e−i χw

2
σ2e−i 1

2
Gγ 2π

3
σ3e−i χc

2
σ2e−i 1

2
Gγθσ3 , (D.1)

where θ is the orbital angle between the measurement location and the χc partial

snake.

With the algebraic relations of the Pauli matrices

σiσj = 1, for i = j;

σiσj = iεijkσk, for i 6= j

and

e−i~σ·~b
2 = I cos

b

2
− i~σ · n̂ sin

b

2
(b = |~b|, n̂ =

~b

b
),
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we have

e−i Gγθ
2

σ3 = I cos Gγθ
2

− iσ3 sin Gγθ
2
,

e−i χc
2

σ2 = I cos χc

2
− iσ2 sin χc

2
,

e−i Gγθ
2

2π
3

σ3 = I cos Gγ
2

2π
3
− iσ3 sin Gγ

2
2π
3
,

e−i χw
2

σ2 = I cos χs

2
− iσ2 sin χs

2
,

e−i Gγθ
2

(2π− 2π
3
−θ)σ3 = I cos Gγθ

2
(2π − 2π

3
− θ) − iσ3 sin Gγθ

2
(2π − 2π

3
− θ).

(D.2)

Multiplying all of the terms in Eq.(D.2) in order, the OTM becomes

T = cos
χc

2
cos

χw

2
cosGγ − sin

χc

2
sin

χw

2
cos

π

3
Gγ −

iσ3[cos
χc

2
cos

χw

2
sinGγ − sin

χc

2
sin

χw

2
sin

π

3
Gγ] −

iσ2[sin
χc

2
cos

χw

2
cos (θ − π)Gγ − cos

χc

2
sin

χw

2
cos (

π

3
− θ)Gγ] +

iσ1[sin
χc

2
cos

χw

2
sin (π − θ)Gγ − cos

χc

2
sin

χw

2
sin (

π

3
− θ)Gγ]. (D.3)

The OTM expressed as a 2 × 2 matrix is then

T =





A B

C D



 , (D.4)

where A,B,C,D are

A = cos
χc

2
cos

χw

2
e−iGγ − sin

χc

2
sin

χw

2
e−i π

3
Gγ ,

B = sin
χc

2
cos

χw

2
ei(π−θ)Gγ + cos

χc

2
sin

χw

2
ei( π

3
−θ)Gγ ,

C = sin
χc

2
cos

χw

2
e−i(π−θ)Gγ + cos

χc

2
sin

χw

2
e−i( π

3
−θ)Gγ ,

D = cos
χc

2
cos

χw

2
eiGγ − sin

χc

2
sin

χw

2
ei π

3
Gγ . (D.5)

Identifying the OTM to

T = e−iπνsn̂co·~σ = I cos πνs − i~σ · n̂co sin πνs

= I cos πνs − i(σ1 cos Ψ1 + σ2 cos Ψ2 + σ3 cos Ψ3) sin πνs

=





cosπνs − i cos Ψ3 sin πνs −i(cos Ψ1 − i cos Ψ2) sin πνs

−i(cos Ψ1 + i cos Ψ2) sin πνs cos πνs + i cos Ψ3 sin πνs,



 (D.6)
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where νs represents the spin tune, (cosα1, cosα2, cosα3) are the stable spin direc-

tion n̂co directional cosines along the radially outward, longitudinally forward and

vertically transverse axes respectively.

Finally, we can get the expression of spin tune and spin stable spin direction with

the two partial snakes as

νs =
1

π
arccos (cos

χc

2
cos

χw

2
cos [Gγπ] −

sin
χc

2
sin

χw

2
cos [Gγ

π

3
]), (D.7)

cosα1 =
−1

sin πνs

(cos
χw

2
sin

χc

2
sin [Gγ(π − θ)] +

sin
χw

2
cos

χc

2
sin [Gγ(

π

3
− θ)]), (D.8)

cosα2 =
1

sin πνs

(cos
χw

2
sin

χc

2
cos [Gγ(π − θ)] +

sin
χw

2
cos

χc

2
cos [Gγ(

π

3
− θ)]), (D.9)

cosα3 =
1

sin πνs

(cos
χw

2
cos

χc

2
sin [Gγπ] −

sin
χw

2
sin

χc

2
sin [

Gγ

3
π]). (D.10)
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Appendix E

Spin Rotation for Spin Tracking

Start from the BMT equation:

d~S

dt
=

e

mγ
~S × ~F , (E.1)

where

~F = (1 +Gγ) ~B⊥ + (1 +G) ~B‖ + (Gγ +
γ

γ + 1
)
~E × ~β

c
. (E.2)

Assuming ~E = 0 for the negligible electric field in the machine and the conve-

nience of discussion, express the components of magnetic field ~B⊥ and ~B‖ in terms of

magnetic field ~B as

~B⊥ =
1

v2
(~v × ~B) × ~v (E.3)

and

~B‖ =
1

v2
(~v · ~B)~v. (E.4)
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Then the ~F vector becomes

~F = (1 +Gγ) ~B⊥ + (1 +G) ~B‖

= (1 +Gγ)
1

v2
(~v × ~B) × ~v + (1 +G)

1

v2
(~v · ~B)~v

= (1 +Gγ)
1

v2
[(~v · ~v) ~B − (~v · ~B)~v] + (1 +G)

1

v2
(~v · ~B)~v

= (1 +Gγ)
~v · ~v
v2

~B − (1 +Gγ)(~v · ~B)~v + (1 +G)
1

v2
(~v · ~B)~v

= (1 +Gγ) ~B −G(γ − 1)(~v · ~B)~v. (E.5)

Because of

~v =
d~r

dt
=
ds

dt
[x

′

x̂+ (1 +
x

ρ
)ŝ+ y

′

ŷ], (E.6)

the amplitude of the velocity of the particle is

v =
ds

dt
[x

′2 + (1 +
x

ρ
)2 + y

′2]1/2. (E.7)

Therefore, the differentiation with respect to the coordinate t can be transformed to

the differentiation with respect to s by

d

dt
=

d

ds

v
√

x′2 + y′2 + (1 + x/ρ)2
. (E.8)

Using Eq.(E.8) and
e

mγ
=

v

Bρ
(E.9)

Eq.(E.1) becomes

d~S

ds
= ~S × ~w, (E.10)

with

~w =
h

Bρ
[(1 +Gγ) ~B −G(γ − 1)(~r

′ · ~B)~r
′

], (E.11)

where h =
√

x′2 + y′2 + (1 + x/ρ)2 and ~r
′
= ~v

v
.

Expressing Eq.(E.11) in terms of three components, we have

S
′

x = wsSy − (wy −
1

ρ
)Ss

S
′

y = wxSs − wsSx (E.12)

S
′

s = (wy −
1

ρ
)Sx − wxSy.
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The system generates three identical linear equation for the three components of the

spin

S
′′′

+ w2
0S

′

= 0, (E.13)

where w2
0 = w2

x + (wy − 1
ρ
)2 + w2

s . The general solution of Eq.(E.13) is

S = C1 + C2 cosw0δs+ C3 sinw0δs. (E.14)

Here δs is the orbit length along the reference orbit, C1, C2, C3 are the constants that

can be obtained as a function of the initial values of the three components of the spin

using the original and second derivative system. The spin transfer matrix is given by

ST =











1 − (a2
2 + a2

3)Cs a1a2Cs+ a3Sn a1a3Cs− a2Sn

a2a1Cs− a3Sn 1 − (a2
1 + a2

3)Cs a2a3Cs+ a1Sn

a3a1Cs+ a2Sn a3a2Cs− a1Sn 1 − (a2
1 + a2

2)Cs











. (E.15)

Here

a1 =
wx

w0
, a2 =

wy − 1/ρ

w0
, a3 =

ws

w0
, (E.16)

and

Cs = 1 − cosw0δs, Sn = sinw0δs. (E.17)



98 E. Spin Rotation for Spin Tracking



BIBLIOGRAPHY 99

Bibliography

[1] Ya.S.Derbenev and A.M.Kondratenko, Dokl. Akad. Nauk SSSR 223, 830, (1975);

Sov. Phys. Dokl. 20, 562 (1976).

[2] T.Roser, AIP Conference Proceedings, 187, 1442 (1988).

[3] H.Huang et al., Phys. Rev. Lett. 73, 2982 (1994).

[4] H.Huang, Ph.D. Thesis, Indiana University (1995).

[5] T.Roser, et al., Proceedings of EPAC 2004 p.1577, Lucerne, Switzerland (2004);

T.Roser, et al., Proceedings of SPIN 2004 p.687, Trieste, Italy (2004).

[6] E.Willen et al., Proceedings of PAC 2005 p.2935, Knoxville, Tennessee (2005).

[7] J.Takano et al., Journal of Instrumentation, 1, 11002 (2006).

[8] F.Lin et al., Phys. Rev. STAB 10, 044001 (2007).

[9] L.H.Thomas, Phil. Mag. 3, 1 (1927) ; V.Bargmann, L.Michel, V.L.Telegdi, Phys.

Rev. Lett. 2, 435 (1956).

[10] S.Y.Lee, Spin Dynamics and Snakes in Synchrotrons, Singapore: World Scien-

tific (1997).

[11] E.D.Courant and R.Ruth, BNL report, BNL-51270 (1980).



100 BIBLIOGRAPHY

[12] E.D.Courant, S.Y.Lee and S.Tepikian p.174 and S.Y.Lee p 189 in Proc. of Work-

shop on Polarized Beam at SSC, AIP Conf. Proc. No.145 p.174 (AIP, N.Y.,

1985).

[13] M.Froissart and R.Stora, Nucl.Inst.Meth. 7, 297 (1960).

[14] A.Zelenski, et al., Proc. of the 9th Inter. Conf. on Ion Sources, Rev. Sci. Inst.,

Vol. 73, No.2, p.888 (2002)

[15] F.Z.Khiari et al., Phys. Rev. D80, 45 (1989).

[16] M.Bai et al., Phys. Rev. Lett. 80, 4673 (1998).

[17] M.Bai, Ph.D. Thesis, Indiana University (1999).

[18] V.I.Ptitsyn and Yu.M.Shatunov, Proc. 3rd Workshop on Siberian Snake and Spin

Rotators, BNL (1994)

[19] T.Roser et al., AGS/RHIC/SN-72/BNL (1998)

[20] E.D.Courant, SPIN2002 15th International Spin Physics Symposium, AIP Con.

Proc., No. 675 p.799 (2002)

[21] A.U.Luccio and T.Roser BNL/C-AD/AP/167 (2004)

[22] VECTOR FIELDS, LTD: Opera-3d Reference Manual. Technical report, Eng-

land, January 2002

[23] A.U.Luccio, Technical Report AGS/RHIC/SN No.03 BNL (1996)

[24] J.P.Blewett and R.Chasman, Journal of Appl. Phys., 48, 2692 (1977)

[25] A.U.Luccio, KEK Report 2005-11, January 2006 A (2006)

[26] J.J.Wood, Ph.D. Thesis, University of California Los Angeles (2005)



BIBLIOGRAPHY 101

[27] G.G.Ohlsen and P.W.Keaton,Jr., Nucl. instrum. Methods, 109, 41 (1973)

[28] H.Spinka et al., C-A/AP/108, BNL (2003)

[29] J.Tojo et al., Phys. Rev. Lett., 89, 052302 (2002)

[30] F.Lin et al., Proc. of 2007 Particle Accelerator Conference p.3534, Albuquerque,

New Mexico, USA (2007)

[31] R.A.Phelps, et al., Phys. Rev. Lett., 78, 2772 (1997)

[32] V.H.Ranjbar, et al., Phys. Rev. Lett., 91, 03480 (2003)

[33] H.Huang et al., accepted by Phys. Rev. Lett. (2007)

[34] A.U.Luccio, BNL/AGS/AD/96-1 (1995); A.U.Luccio, Proceedings of the Adri-

atico Research Conference on Trends in Collider Spin Physics p.235 Trieste, Italy

(1995).

[35] A.U.Luccio, C-A/AP/283, BNL (2007)

[36] F.C.Iselin, Report No. CERN/SL/92 (1994)

[37] V.H.Ranjbar, Ph.D. Thesis, Indiana University (2002)

[38] S.Tepikian, Ph.D. Thesis, State University of New York at Stony Brook (1986)

[39] S.Y.Lee and S.Tepikian, Phys. Rev. Lett., 56, 1635 (1986)

[40] H.Huang, RHIC Retreat 2007, BNL (2007)

[41] Discussion in Spin Meeting at BNL CAD (2007)



CURRICULUM VITAE

Fanglei Lin

Physics Department, Indiana University

729 E 3rd Street, Bloomington, IN 47405

Email: linf@indiana.edu

• EDUCATION

DEGREE

Ph.D. (08/2007)

M.S. (08/2005)

M.S. (08/2003)

B.S. (08/2000)

MAJOR

Accelerator Physics

Accelerator Physics

Optics Physics

Physics

INSTITUTION

Indiana University

Indiana University

U of Sci.&Tech. of China

Shandong Normal Uni.

• RESEARCH

Brookhaven National Lab Collider-Accelerator Department 2004-2007

– Hands-on experience with acceleration operation. Have taken many shifts

for AGS/RHIC setup and commissioning. Focused on increasing the polar-

ization of the polarized proton by varying the tune, orbit and chromaticity.

– Revised the spin tracking program SPINK, carried out lots of spin trackings

with the AGS operation lattice parameters.

– Focused on one project to explore of the horizontal intrinsic resonance in

AGS with numerical simulation, theoretical calculation and experiment.

– Investigated the polarization drop in the AGS due to other causes: residual

vertical intrinsic resonance, partial snake resonance, closed orbit distortion.

– Attended the theoretical derivation of the dispersion in NSLS II partially.



• EXPERIENCE

Dissertation TOWARDS FULL PRESERVATION OF POLARIZATION OF

PROTON BEAM IN THE AGS 2007

Research Assistant Brookhaven National Laboratory 2005-2007

– Machine Operation: Shift trainee in RHIC Run2005; Shift leader in AGS

Run2006.

– Exploration of Spin Horizontal Intrinsic Resonance of the Polarized Proton

in the AGS and toward full preservation of polarization of proton beam in

the AGS

Teaching Assistant Indiana University 2003-2004

Course: General Physics

Research Assistant U. of Science & Technology of China 2001-2003

Dissertation: Theoretical Study of Photonic Crystal

Teaching Assistant U. of Science & Technology of China 2000-2001

Course: Optics Physics

• PUBLICATIONS

– H.Huang, L.A.Ahrens, M.Bai, K.A.Brown, E.D.Courant, C.Gardner, J.W.Glenn,

F.Lin, A.U.Luccio, W.W.MacKay, M.Okamura, V.Ptitsyn, T.Roser, J.Takano,

S.Tepikian, N.Tsoupas, A.Zelenski, K.Zeno, “Overcoming Depolarizing

Resonances with Dual Partial Helical Siberian Snakes”, Physical Review

Letters, 99, 154801 (2007)

– F.Lin, L.A.Ahrens, M.Bai, K.A.Brown, E.D.Courant, C.Gardner, J.W.Glenn,

H.Huang, S.Y.Lee, A.U.Luccio, W.W.MacKay, V.Ptitsyn, T.Roser, J.Takano,

S.Tepikian, N.Tsoupas, A.Zelenski, K.Zeno, “Exploration of Horizontal In-



trinsic Spin Resonances with Two Partial Siberian Snakes”, Physical Re-

view Special Topics - Accelerators and Beams, 10, 044001 (2007)

– F.Lin, L.A.Ahrens, M.Bai, K.A.Brown, E.D.Courant, C.Gardner, J.W.Glenn,

H.Huang, S.Y.Lee, A.U.Luccio, W.W.MacKay, T.Roser, N.Tsoupas, “In-

vestigation of Residual Vertical Intrinsic Resonances with Dual Partial

Siberian Snakes in the AGS”, Proceedings of 2007 Particle Accelerator

Conference p.3534, Albuquerque, New Mexico, USA (2007)

– F.Lin, W.Guo, Samuel Krinsky, “Dispersion Tolerance calculation for NSLS-

II”, Proceedings of 2007 Particle Accelerator Conference p.1341, Albu-

querque, New Mexico, USA (2007)

– H.Huang, L.A.Ahrens, M.Bai, K.A.Brown, C.Gardner, J.W.Glenn, F.Lin,

A.U.Luccio, W.W.MacKay, T.Roser, S.Tepikian, N.Tsoupas, K.Yip, K.Zeno,

“Overcoming Depolarizing Resonances in the AGS with Two Helical Par-

tial Siberian Snakes”, Proceedings of 2007 Particle Accelerator Conference

p.748, Albuquerque, New Mexico, USA (2007)

– H.Huang, L.A.Ahrens, M.Bai, A.Bravar, K.A.Brown, E.D.Courant, C.Gardner,

J.W.Glenn, F.Lin, A.U.Luccio, W.W.MacKay, V.Ptitsyn, T.Roser, S.Tepikian,

N.Tsoupas, J.Wood, K.Yip, A.Zelenski, K.Zeno, M.Okamura, J.Takano,

“Polarized Proton Acceleration in the AGS with Two helical Partial Snakes”,

Proceedings of the 17th International Spin Physics Symposium SPIN2006

Conference, Kyoto, Japan (2006)

– H.Huang, L.A.Ahrens, M.Bai, A.Bravar, K.A.Brown, E.D.Courant, C.Gardner,

J.W.Glenn, F.Lin, A.U.Luccio, W.W.MacKay, V.Ptitsyn, T.Roser, S.Tepikian,

N.Tsoupas, J.Wood, K.Yip, A.Zelenski, K.Zeno, M.Okamura, J.Takano,

“Acceleration of Polarized Protons in the AGS with Two helical Partial

Snakes”, Proceedings of 2006 European Particle Accelerator Conference

p.273, Edinburgh, UK (2006)



– H.Huang, L.A.Ahrens, M.Bai, K.A.Brown, E.D.Courant, C.Gardner, J.W.Glenn,

R.C.Gupta, F.Lin, A.U.Luccio, W.W.MacKay, V.Ptitsyn, T.Roser, S.Tepikian,

N.Tsoupas, E.Willen, A.Zelenski, K.Zeno, M.Okamura, J.Takano, “Accel-

eration of Polarized Protons in the AGS with Two helical Partial Snakes”,

Proceedings of 2005 Particle Accelerator Conference p.1404, Knoxville,

Tennessee, USA (2005)

– M.Bai, H.Huang, W.W.MacKay, V.Pitisyn, T.Roser, S.Tepikian, S.Y.Lee,

F.Lin, “Observations of Snake Resonance in RHIC”, Proceedings of 2005

Particle Accelerator Conference p.2839, Knoxville, Tennessee, USA (2005)

• PRESENTATION

“Exploration of Horizontal Intrinsic Spin Resonances in the AGS”, 2006 APS

April Meeting, Dallas, Texas, USA

• FELLOWSHIPS AND GRANTS

PAC2007 Graduate Student Grant

PAC2005 Graduate Student Grant

Indiana University Teaching Fellowship 2004-2005

Indiana University Teaching Fellowship 2003-2004

• AWARDS AND HONORS

PAC2007 Student Poster Award Winner (sponsored by IEEE-NPSS) 2007

Indiana University Award $5000 2004-2005

Indiana University Award $5000 2003-2004

Shandong Normal University “Excellent Student” 1998-1999

Shandong Normal University “Excellent Student” 1997-1998

Shandong Normal University “The Second-class Scholarship” 1998-1999



Shandong Normal University “The First-class Scholarship” 1997-1998

Shandong Normal University “The Second-class Scholarship” 1996-1997


